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Abstract

Monitoring wildlife is vital for sustainable coexistence between humans, flora,
and fauna. Do we have a healthy population? Is an animal near extinction, or
did new species arrive in the habitat? Where do the animals stay, hunt, and
live? Forest rangers, livestock owners, and other interested people place camera
traps to answer those questions. Those camera traps automatically take photos
if motion is detected, which easily leads to many images to be analyzed. The
quality of those photos often varies and depends on the environment. Animals
usually do not stand directly close in front of the lens but are partly covered
by the fauna or only barely visible in the distance. Furthermore, precipitation,
fog, dirt, and many other conditions additionally decrease the image quality and
hinder the detection of animals.

Our interest comes from our mAInZaun project. The idea is to place cameras
on the poles of pasture fences. Deterrents are automatically activated using
artificial intelligence if predators like wolves, golden jackals, stray dogs, etc., are
detected. Ideally, this approach should reduce the predator attacks on grazing
animals in a non-lethal way. The automatic activation of the deterrents requires
a good detection of predators. Both, false alarms and undetected predators,
must be prevented and require a good detection model.

Training a model detecting animals requires a certain amount of training
data in the form of labeled images. The interest is not only in the clearly visible
animals but especially in the hard-to-see ones. Furthermore, the model has to
be adapted occasionally to ensure good performance in different environments
or if new species have to be detected.

This work addresses those challenges with our ShadowWolf framework,
which offers an assisted approach for automatically labeling camera trap
images. Using state-of-the-art machine-learning algorithms in combination
with internet-based crowdsourcing significantly increases the detection
of animals and reduces the workload for individual domain experts
simultaneously. The outcome is a training dataset that can be used to train
arbitrary object detection and classification algorithms. The user can select
the appropriate model to run on different devices – from constrained edge
devices to a high-end server.

We also collected and analyzed our dataset containing more than 100,000
camera trap images to evaluate our ShadowWolf framework. We also discuss
deploying a sensor network tailored for our agriculture application.

In the end, this work benefits everybody dealing with real-world wildlife
camera trap images: Counting animals, detecting predators, and optimizing au-
tomatic machine learning models are simplified and also usable by non-technical
people.
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Kurzfassung

Für ein nachhaltiges Zusammenleben zwischen Mensch und Tier ist die genaue
Beobachtung der Flora und Fauna von fundamentaler Bedeutung. Welche Tiere
halten sich in der Umgebung auf? Sind neue Tierarten eingewandert? Wo jagen
diese? Förster, Weidetierhalter und andere interessierte Personen sammeln die-
se Informationen mit Wildkameras. Diese nehmen bei Bewegung automatisch
Bilder auf, was schnell zu vielen Fotos führt, die analysiert werden müssen. Die
Qualität variiert und hängt stark von der Umgebung ab. Die Tiere stehen häufig
nicht direkt vor der Linse, sondern im Hintergrund. Auch die Vegetation kann die
Tiere zum Teil verdecken. Zusätzlich variiert die Bildqualität auch noch durch
Umgebungseinflüsse wie z.B. Niederschlag, Nebel, Schmutz und viele weitere.
Dies erschwert die Erkennung.

Unser Interesse in diesem Bereich stammt aus dem mAInZaun-Projekt. Die
Idee ist es, Kameras auf Pfosten von Weidezäunen zu platzieren. Vergrämungs-
stimuli werden automatisch aktiviert, sobald eine künstliche Intelligenz (KI)
ein Raubtier wie Wolf, Goldschakal oder einen streunenden Hund erkennt. Im
Idealfall reduziert dieser Ansatz die Übergriffe auf Weidetiere. Diese automati-
sche Auslösung setzt eine zuverlässige Erkennung durch die KI voraus. Sowohl
Fehlalarme als auch nicht erkannte Angriffe müssen verhindert werden.

Das Training einer solchen KI benötigt einen Trainingsdatensatz bestehend
aus annotierten Bildern. Hier liegt der Fokus nicht nur auf die gut zu erkennen-
den Tiere, sondern besonders auf die schwierig zu erkennenden. Weiterhin muss
das Modell der KI von Zeit zu Zeit angepasst werden, damit diese auch unter
angepassten Bedingungen gute Leistung zeigt.

All diese Herausforderungen geht diese Arbeit mit unserem ShadowWolf an.
Es nutzt einen geführten Modus für das automatische Annotieren von Bildern.
Hierzu kombiniert es aktuelle Technologien aus dem Bereich der Objekterken-
nung mit einer internetbasierten Validierung durch Interessierte. Dieser Ansatz
erhöht die Erkennung von Tieren und reduziert den Arbeitsaufwand für die
Fachleute. Als Ergebnis erhält man einen Trainingsdatensatz, mit dem beliebi-
ge KI-Modelle trainiert werden können. Diese können dann an die individuellen
Ansprüche und entsprechend der verfügbaren Ressourcen skaliert werden.

Für diese Arbeit haben wir außerdem einen Trainingsdatensatz mit über
100.000 Fotos aus Wildkameras gesammelt und analysiert. Weiterhin diskutieren
wir den Einsatz des Systems im Feld mit einem Sensornetz speziell für den
Einsatz im landwirtschaftlichen Umfeld.

Am Ende bietet diese Arbeit einen Mehrwert für alle, die mit Bildern aus Fo-
tofallen arbeiten. Sowohl das Zählen von Tieren, die Erkennung von Raubtieren
oder das automatische Training von KI-Modellen wird auch für nicht technisch
versierte Personen anwendbar.
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Chapter 1

Introduction

With approximately 84 million residents or 238 people per square kilometer1,
Germany is quite densely populated. In contrast to other countries like, for
example, France (118), Italy (199), Poland (134), or Spain (95), the risk of
potential conflicts between the interests of humanity and wildlife is comparably
high. Especially after the resettlement of wolves around the year 2000, the
number of kills of farm animals is continuously increasing.

This leads to two oppositional parties: One welcomes the wolves back to
Germany and wants to protect them. The other focuses more on the damages
caused by wolves – mainly financial, livestock, and emotional – and prefers
regulating the number of animals. This thesis focuses not on discussing the pros
and cons of hunting wolves. Instead, we show the current technologies to foster
living together with them. The main idea is to develop a system to reliably
detect all kinds of predators, adapt dynamically to new species, and help to
monitor their living habitats. It further discusses some non-lethal technologies
that might help deter predators from farm animals.

The following sections will discuss the current situation regarding predators
in Germany. We also explain the idea and the foci of the mAInZaun project, in
which context this work was written. We further list the contributions of this
thesis and outline the following chapters.

1.1 Carnivora in Germany

Carnivores, which can hunt large animals or can even become dangerous to
humans, are rare in Germany. Besides a few sightings of brown bears, golden
jackals, or Eurasian lynxes, Canidae, like (stray) dogs and wolves, are by far
gaining the most public interest. Wolves (Canis lupus), or more precisely, wolves
killing farm animals, play a dominant role in the news nowadays.

After excessive hunting in the 15th century, wolves have been extinct in cen-
tral Europe since the 19th century. Since the 1980s, wolves have been protected
in Europe and Germany by several laws and regulations [1, 2, 3], leading to an
increasing number of wolves. In 2000, the first wolf pups were born in freedom in
Germany. In the monitoring year 2022/2023, 184 packs of wolves were counted

1https://ourworldindata.org/most-densely-populated-countries

accessed: 2023-10-23

1

https://ourworldindata.org/most-densely-populated-countries
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in Germany2. Wolf sightings are reported from 15 out of 16 states of Germany,
with a focus on Brandenburg, Saxony, Mecklenburg Vorpommern, Saxony An-
halt, and Lower Saxony. The DBBW (Dokumentations- und Beratungsstelle
des Bundes zum Thema Wolf)3 gives details about the number of kills on farm
animals and the financial aspects. In 2022, the DBBW registered 1136 attacks
of wolves on farm animals, leading to 4366 dead animals. On average, wolves
killed 3.8 animals per attack. 89% of the animals were sheep or goats. The
actual numbers of attacks are expected to be higher as not every farmer reports
the attacks for various reasons.

The states offer compensation payment for confirmed kills by wolves. In
2022, 616,000e were paid mainly by Brandenburg, Lower Saxony, and Saxony.
This money compensates only part of the actual damage. Besides the financial
damages of losing several animals, the psychological damage to the flock is
challenging: The remaining herd is often traumatized, nervous, and hard to
handle for several weeks. Additionally, the number of lambs in the following
years is often reduced, leading to even higher financial losses.

Therefore, the focus is on protecting the farm animals from the wolves. The
states invested 2022 18,428,830e in protective measures like wolf-proven fences.
Ideally, a fixed fence is used. This should have five electrical wires: the lowest
20 cm above the ground, the highest 120 cm above the ground. If an animal
touches it, it will get a painful electrical shock. Building such a fence is costly
and requires lots of effort.

In some cases, portable fences are used. For example, the shepherds in
northern Germany move their flocks along the dike, and the fences must also
move. Also, those fences give electrical shocks if touched. Those portable fences
are less durable and reliable than the fixed ones.

All fences require proper maintenance to be protective. For example, if the
electrical wires touch the grass or bushes, the circuit is short-circuited, and
the power of the shocks is reduced, limiting the protection. Therefore, regular
mowing under the fences is required as the sheep will not eat the grass next to
the electrical wires. The fences must also be checked for large gaps where the
wolves can crawl through.

The wolves carefully examine the existing fences for such vulnerabilities and
overcome barriers. Once on the pasture, they often kill more animals than re-
quired. Ideally, the pain and the expenses for the wolf accessing the pastureland
are so high that it prefers hunting wild animals, like roe deer or wild boars, and
neglects the farm animals.

The objective of the mAInZaun project, as described in the following section,
is to make existing fences more resilient against wolves.

1.2 The mAInZaun Project

Animals, which are kept outside for farming purposes, must be protected from all
possible hazards, including escaping the pasture or unwanted access by predators
[4, 5, 6]. Building a wolf-proven fence is complex and expensive. In some cases,
like movable fences, even impossible. Those portable fences are essential to

2https://www.bfn.de/daten-und-fakten/wolfsvorkommen-deutschland

accessed: 2023-10-24
3https://www.dbb-wolf.de/,accessed:2023-12-26

https://www.bfn.de/daten-und-fakten/wolfsvorkommen-deutschland
https://www.dbb-wolf.de/, accessed: 2023-12-26
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protect the dikes in northern Germany. Here, they are used for shepherding:
The sheep are ideal for maintaining the dikes by cutting and fertilizing the grass
and compacting the surface without destroying it. Heavy, wolf-proven fixed
fences are not allowed on dikes as they are part of a critical flood-protection
infrastructure.

The idea of our mAInZaun project4 is to strengthen the existing fences by
using state-of-the-art Artificial Intelligence (AI) technology. The project focuses
on wolves; the overall system should be adaptable to other predators. The
objective is to increase the protection level of the fences in two parts: Detection
and Deterrence.

The detection part is sensing the environment: Is a predator accessing the
fence, examining it for weaknesses, or trying to overcome the barrier? If the
sensors detect such activity near the perimeter, the second part is activated:
deterrence. Here, the neophobia of wolves is used: a variety of possible deter-
rents like ultrasound, flashing lights, odor, etc., can be activated to confuse the
wolf’s senses. The idea is to make the investigation of the fence perimeter for
the wolves as unpleasant as possible. Another behavior of the wolves is also
advantageous for the project: They do not spontaneously approach and over-
come fences. Before that, the fence is usually examined, increasing the chance
of detecting the wolves with our sensors.

This thesis focuses mainly on the detection of wolves and the activation of
the deterrents. We also show the options and constraints of running such a
system independent of infrastructure in the wild. The effect of the deterrents
on predators and farm animals is evaluated by the Professorship of Animal
Husbandry, Behaviour, and Welfare at the Justus-Liebig University in Gießen,
Germany. Another partner, RoFlexs5, has experience in fencing and supports
the project with its knowledge. The complete architecture of the mAInZaun
project is depicted in Figure 1.1.

1.3 Contributions of the Thesis

Detecting animals in automatically captured real-world images is beneficial for
several use cases. In this work, we introduce ShadowWolf , a framework to handle
those images and help to improve arbitrary object detection and classification
models continuously. The main contributions of this work are manifold and
discussed in this section.

Working with real-world images is essential for this work. Most existing
works in the area of animal detection focus on good images or synthetically
created ones. Bad images are usually removed from the datasets. We need the
complete dataset from the camera and therefore collected our wolf datasets
with more than 100,000 photos from animal parks in northern Germany.
This also includes bad images, i.e., photos captured during the night or rain.

Labeling and evaluating those images can be a tedious job. To offload this
work from individuals to a larger group of interested people, we created Wolf-
or-Not . This is an internet-based application to annotate images using
crowdsourcing and helps to label and evaluate the wolves in our image dataset.

4https://intelligenter-herdenschutz.de/
5https://www.roflexs.shop

https://intelligenter-herdenschutz.de/
https://www.roflexs.shop
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Figure 1.1: In the mAInZaun project, a traditional pasture fence is extended.
Cameras are located on the fence poles and detect predators like wolves. If an
endangerment is detected near the fence, deterrents or alarms are activated to
protect the farm animals from the attackers. Ideally, the system should also be
able to detect humans like burglars or other persons with evil intentions and
inform the owner in time. All this requires reliable object detection.
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While Wolf-or-Not is quite flexible in annotating the images, the overall
process is much more complex and requires pre- and postprocessing steps. Fur-
thermore, the number of images processed by Wolf-or-Not should not be too
high to get results on time. For that, we developed the main contribution of this
work: ShadowWolf . This is a framework to train models automatically
and continuously. It automatically combines three steps: First, we prepro-
cess the images and find areas with activity. Second, we run state-of-the-art
object detection to find the objects of interest. Last, we validate the detections
with our Wolf-or-Not and create a training dataset. Everything works with
only minor human interaction and is highly flexible to adapt and extend. Es-
pecially the combination of state-of-the-art object detection and classification
models with a Wolf-or-Not-based validation helps to find hidden objects that
were only detected with low probabilities by the model. As an output, we get
labeled images that can be used to train a new model or help to screen images.
ShadowWolf also evaluates the quality of the results. Further, it is a modular
system that allows the replacement and adaptation of individual parts.

The object detection used in Wolf-or-Not is a crucial component. Therefore,
we evaluated several state-of-the-art frameworks. For the most promis-
ing one, YOLO, we went further. Also, we assessed the required computing
resources, the inference speed, and the capabilities of running on different ma-
chines starting from a RaspberryPi to a Graphics Processing Unit (GPU) server.

The objective of the overarching mAInZaun project is detecting and de-
terring predators in agricultural environments. For that, we offer a system
architecture design for an outdoor environment deployment using a wireless
sensor network tailored for animal detection and deterrence.

Summarized, the main contributions handled in this work are:

Contribution 1:
Camera trap image dataset with wolves

Contribution 2:
Webservice for crowd-based image annotation (Wolf-or-Not)

Contribution 3:
Toolchain to automatically label images and create training datasets
(ShadowWolf )

Contribution 4:
Comparison and fine-tuning of current machine-learning models in the
area of object detection and classification

Contribution 5:
Deployment in the field for the mAInZaun project

1.4 Outline of the Thesis

We structure this work as follows: Chapter 2 creates the overall context of this
work. It states the problem and discusses the current state-of-the-art in the area
of camera trap images, animal detection, wireless technologies, and deterrents.
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Chapter 3 focuses on machine learning and discusses the currently used terms
and technologies. Here, we also discuss the current available frameworks and
their performance as well as the commonly used metrics in this area.

The objective of this work is to deploy all parts outside. We selected LoRa as
the wireless technology to connect the system’s components. Chapter 4 discusses
and evaluates LoRa and its properties in detail.

Suitable images are essential for tasks in image processing. In our case,
we require a lot of realistic wolf images for the individual parts of this thesis.
Therefore, we describe the challenges in those images, our data collection, and
the datasets in detail in Chapter 5.

In our work, we use the YOLO framework for object detection and evaluate
its performance and ability to run inference on different hardware platforms in
Chapter 6.

Wolf-or-Not is our tool to distribute the effort of labeling and evaluating
images to many interested people using crowdsourcing. We discuss it in detail
in Chapter 7.

ShadowWolf is the main contribution of this work and is described and
evaluated in chapter 8.

This work and the mAInZaun project aim to deploy the complete system,
i.e., the animal detection and deterrent network outdoors. We describe this in
Chapter 9.

Finally, Chapter 10 concludes this work and gives an outlook for future steps
in the context of this work.



Chapter 2

Problem Statement and State

of the Art

This thesis is written in the context of the mAInZaun project. The project
aims to detect and deter predators near pasture fences, thus protecting the
farm animals. This results in several challenges. Besides the deterrence of
the predators, the reliable detection of those is the main challenge and the
central contribution of this work. The animals must be reliably detected in the
foreground, background, or even partly visible. Here, environmental effects like
rain, snow, dust, dirt, changing light conditions, etc., play an important role.
Furthermore, distant animals should be detected reliably, leading to further
challenges.

This chapter discusses the problems in this field. Section 2.1 describes our
main problem and the related tasks. We detail the recent research in object
detection for animal detection in outside environments in Section 2.2. To train
a new model, we need a training dataset. In Section 2.3, we review the related
ones. Section 2.4 discusses the currently used tools used for image labeling.
After the successful detection of a wolf, it should be expelled from the fence.
We briefly review those deterrents’ state of the art in Section 2.5. It is planned
to place the deterrents independently from the detection system and activate
everything wirelessly. Therefore, we review infrastructure-less communication
technologies in Section 2.6. Finally, we discuss our proposed setup in Section 2.7

2.1 Problem Statement

Image processing and semantic analysis (What can be seen? ) arrived in our ev-
eryday lives. We all use it regularly. Sometimes, actively by using a smartphone
app analyzing images like Flora Incognita [7], sometimes passively by reading
automatically generated image descriptions, for example, on Facebook.

All those applications focus on apparent detections: In most cases, the object
of interest is the dominant part in good light conditions. Figure 2.1 shows an
example. Here, a wolf is clearly visible and not covered by, for example, the
vegetation. The lens is clean, and the photo was taken during the daytime. The
situation is clear for humans and AI: A wolf!

Figure 2.2 shows a contrasting image: Two wolves are marked with red

7
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Figure 2.1: A good picture of a wolf: The animal is in the focus in perfect light
conditions. In this situation, the detection is easy.

boxes for better visibility. While one can recognize the right, walking wolf – at
least with some training – the upper, lying one can barely be seen. The light
conditions are not as good as in Figure 2.1. The light is more greyish, and
the wolves cover only a small amount of the total photo. The third example
shown in Figure 2.3 shows an extreme case: raindrops on the lens and barely
visible wolves during the night. Ideally, those should be detected and identified
as wolves reliably.

The reliable detection of – generally speaking – any animal or object in this
kind of automatically captured outdoor images is beneficial for several domains.
One is generating a labeled dataset for training an object detection model. For
that, the objects of interest as the predators in our mAInZaun-project have to
be manually marked and tagged as, for example, wolves. This can be a tedious
task.

Another application of reliable detection is the screening of collected camera
trap images. With the rising number of wolves in Germany, the interest in the
location of the packs is rising. Foresters and hunters place camera traps in the
wild, producing many images. Helping them by at least partly automatizing
the processing reduces their workload and increases efficiency at the same time
and better detect animals.

Object detection and image processing under these circumstances differ sig-
nificantly from other applications. We use a series of automatically captured
camera trap images for training and detection to benefit from the movement of
the animals over time.

Our target environment is farmland, i.e., a meadow or a forest. It can be in a
hilly environment or the flatlands. Depending on the vegetation, we have a free
field of view or a limited sight due to bushes and trees. We must adapt to those
environments quickly and offer good detection even in changing environments.

Although this work focuses on the wolf, the system should be able to detect
arbitrary animals or humans. We want to be able to adapt to other species
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Figure 2.2: Two wolves marked with red boxes: One is walking, the upper one is
lying. Both are hard to recognize. One can also see how well their fur is adapted
to the environment. In this situation, the detection of both is challenging.

Figure 2.3: Two wolves marked with red boxes at night while it is raining. They
are almost impossible to recognize.
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easily.
Also, the environmental conditions can vary. The images on a sunny day are

mostly straightforward. In our scenario, we have to deal with several challenges:
We do not always have a well-lighted and tidy environment. Instead, bushes,
trees, dirt, changing light, insects, etc. affect our images. We need a system that
operates in those natural outdoor environments day and night in all seasons and
results in usable detections.

When automatically capturing images, the animal of interest is not always
in focus. We would like to detect the apparent, easy-to-see animals and the
partly visible, distant ones. The detection should work for animals at least till
10m (also during the night), ideally much further.

We do not consider the energy consumption of the detection. We focus on the
detection itself and optimize the training and the dataset. Energy optimization
can be done later, depending on the specific application requirements.

The mAInZaun project focuses not only on the detection but also on the
deterrence of wolves. After the reliable detection, the wolf should be expelled to
ensure he keeps a safe distance from the perimeter of the fence. Those deterrents
should be sustainable and last for a longer time. They should also operate
over a certain distance, i.e., at least to cover the area between two neighboring
deterrents. The wolf should not be able to pass in the middle easily.

The deterrents should also be able to be operated on battery power. There-
fore, we focus on systems that require a maximum of 12V as a wide range of
transportable power sources can provide this.

The detection part and the deterrents have to be connected flexibly: One
detection system can trigger several different deterrents, the locations can be
different for all parts, and everything should be portable. Connecting all com-
ponents wirelessly has several advantages: It reduces the effort of setting up
everything and prevents potential connection errors caused by the connectors
or wrong handling. Also, the potential for errors is reduced as no wires can be
cut accidentally, for example, by a lawn mower. Further, the effort to set up
the system and place all the components is lower, and also the weight and costs
of long cables should not be neglected.

The overall system should be able to operate reliably even in remote environ-
ments. Even though cellular coverage increases continuously, a good connection
can not be guaranteed. Further, the complete system can have several hundred
devices, resulting in high running costs when using cellular connections.

The deterrents should also be activated if no internet connectivity or other
required infrastructure is available. For that, the object detection device must
activate the neighboring deterrents within less than a second in a range of several
hundred meters. This ensures the system can react if a running wolf passes by.

The remainder of this chapter is structured as follows: In Section 2.2, we
review the work done in the area of animal detection using camera traps or
similar technologies. In Section 2.3, we evaluate the existing image datasets:
Which publicly available datasets can be beneficial for us? We collect our wolf
datasets and need to label at least parts of them. We review the available
tools in Section 2.4. After the successful detection, the objective is to deter the
wolves. We review the available deterrents in Section 2.5. Section 2.6 discusses
the current state of the art regarding the wireless communication technologies
and concepts applicable for this work. We summarize the individual reviews
and select the components we will use for this work in Section 2.7.
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2.2 State of the Art: Animal Detection

With the increasing number of wolves, the number of projects related to wolf
or wild animal detection is increasing.

One example is the German Herdenschutz Wolf 1. Outdoor surveillance cam-
eras send live videos to a server operated by the provider. On this server, an
AI model detects wolves and humans. The system warns not only of wolves
but also of unauthorized access to the protected area. In the case of detection,
the owner of the cameras receives a notification on the mobile phone. Due to
the high amount of data and the continuous video analysis, ethernet and a high
bandwidth internet connection are required on the premise.

Another German project is the school project from Jugend Forscht : Perime-
terschutzsystem2 3. They used radar to create a virtual fence next to the real
fence and detect animals passing it in a distance of up to 60m. In case of detec-
tion, they take photos and videos as proof. They do not run object detection
on the images to identify the animal passing the fence.

In [8], the authors took a different approach and used microphones. They
analyzed the howls of 170 wolves from three subspecies. This gives a general
overview of the number of wolves in proximity but not the exact positions. We
need to detect wolves when examining the fence or attacking animals. In this
phase, they are usually silent and can not be localized by the howls.

Analyzing the selectivity and sensitivity of different infrared light-barrier
activated camera traps are reviewed in [9]. The authors evaluated the detection
of animals in three different sizes in front of six camera systems depending
on the camera height and the distance to the animal. This is used to trigger
automatic camera traps. They do not continuously monitor the environment,
identify animals using machine learning, or catch distant objects.

Where’s the bear (WTB) is a distributed IoT system for wildlife monitoring
[10]. The authors mostly use WiFi cameras to catch wildlife pictures during
the daytime. Those are classified using TensorFlow, and the Inception-v3 ar-
chitecture [11] to detect bears, deer, and coyotes. For the training, the authors
used synthetic images: They downloaded images from the required animals from
Google and inserted them into empty background images. They also describe
and evaluate the complete infrastructure to operate the detection with limited
internet access. They only use good-quality daytime images with clearly visible
animals. They do not consider distant, hard-to-detect ones.

The authors in [12] use the Serengeti dataset [13] with approximately
7.1million animal snapshots. They tested the ability of modern computer
vision methods to count and identify wild animals from 48 species in those
camera trap images. They use a two-stage approach: In the first step, their
model detects whether the picture shows an animal or is empty. The second
step identifies the species in the image. They use this information to add
attributes like standing, eating, etc., and also to count the animals. They
implemented six deep learning architectures using TensorFlow and compared
their performance on the dataset. The results are good; they identify more
than 90 % of the animals. This work shows promising results regarding

1https://www.herdenschutz-wolf.de/
2https://www.saechsische.de/neustadt-in-sachsen/junge-neustaedter-forscher-

erfolgreich-5424642-plus.html, accessed: 2023-12-01
3https://jufo-dresden.de/projekt/archiv/2021/arbeitswelt/A4, accessed: 2023-12-01

https://www.herdenschutz-wolf.de/
https://www.saechsische.de/neustadt-in-sachsen/junge-neustaedter-forscher-erfolgreich-5424642-plus.html
https://www.saechsische.de/neustadt-in-sachsen/junge-neustaedter-forscher-erfolgreich-5424642-plus.html
https://jufo-dresden.de/projekt/archiv/2021/arbeitswelt/A4
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animal identification and can be combined with our work as we are
model-independent. We can offer the training dataset to adapt their evaluated
models.

In [14], the authors suggest an active learning approach for camera trap im-
ages. They use a three-step pipeline and a human oracle for active learning.
The overall objective is to train a Faster-RCNN (ResNet-50, [15]) model imple-
mented in PyTorch to perform classification. They did not change the detection
model but focused on reducing the human interaction time during the training
phase. Using their active learning approach, they reduced the workload for the
oracle by 99.5% for their datasets. We go further in several points: Our generic
toolchain integrates the pre- and postprocessing of the images and the detec-
tions. Additionally, we are model-independent and can use arbitrary models
for the detections. Also, our crowdsourcing approach reduces the workload for
individuals during the detection.

The authors in [16] focus on detecting animals like bears, bison, cows, coy-
otes, horses, etc. in human-habituated environments, especially for security and
road safety. They evaluate eight object detectors regarding their generalization
capabilities, i.e., using different data for training and deployment. They con-
clude that none of the used models operates well on new backgrounds, resulting
in an increased number of undetected objects. They further state that creat-
ing synthetic images by inserting animals in a new background improves the
performance. Two models, RETINA [17] and YOLO, offer good performance
while being comparable and lightweight to run on multi-camera deployments.
Their conclusion is one of the motivations of our work: To achieve the best per-
formance even with changing backgrounds requires continuous training of the
models. Our work offers a toolchain to perform this task automatically.

In [18], the authors describe an active learning strategy for animal detection
on Unmanned Aerial Vehicles (UAV)-captured images. They use a ResNet-
18-based [15] classifier in an active-learning approach to find the animals in
the aerial photos. During the active learning phase, they showed only a small
amount of images to the human expert and were able to increase the detection
of animals in their dataset to 80 %. The detection in aerial photos is different
from ours: In our scenario, we would like to detect the animals in all possible
positions, i.e., directly in front of the camera and also in distant ones in different
light conditions. In aerial images, all objects are located at a similar distance.

In [19], the authors trained a classifier based on the ResNet-18 [15] architec-
ture using TensorFlow. Using camera trap images from North America, they
achieved an accuracy of 97 % in correctly identifying the local species. They of-
fer an R package that allows even inexperienced users in machine learning to use
their pre-trained model or re-train the model to detect other animals. They do
not provide an automated toolchain that integrates the pre- and postprocessing
of the images or allows easy adaptation to images and species.

Real-time wildlife detection for endangered species is the objective of [20].
They propose an adapted YOLOv4 structure for a fully automated animal obser-
vation system for field applications. They train and validate their model using a
dataset collected from the internet and focus on challenging conditions like low
visibility, multiple animals in one image, different aspect ratios, complex back-
grounds, and animals similar to the surrounding environment. Their model
detects the individual animals with an F1 score of 98%. They use full-scale,
high-quality images to identify and count the animals. We require identification
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even on bad images with barely visible, distant animals.
MegaDetector [21] focuses on creating boxes of interest and identifies the

general classes: animal, human, or vehicle. A classifier or object detection
model can later treat those boxes to determine the exact species. The authors
are currently extending MegaDetector to a PyTorch Wildlife Framework. They
aim to offer a Collaborative Deep Learning Framework for Conservation. The
focus is on detecting animals in general, not on individual species. MegaDetector
can be combined with our work to find the animals in the images. Another model
can then identify the animal. We offer the flexibility for this kind of integration.
Unfortunately, MegaDetector requires quite a powerful machine, which hinders
its deployment on constrained devices.

The authors in [22] use thermal cameras and the YOLO framework to detect
humans in cold environments. Due to the differences to the normal (RGB-
coloured) images, i.e., lower resolution and false-colors, they required training
on an extended thermal image dataset. They did not evaluate how the system
works on different classes or in warm environments. We need to detect and
identify animals in all environments, i.e., also in the warm summer where the
outside temperature is close to the body temperature of mammals.

The authors in [23] developed two object detection models on a set of thermal
images. They used three classes (car, bike, person) and got promising results.
They did not evaluate the detection at higher distances. The limitations of
Thermal imaging are summarized in [24]: The weather conditions – especially
the solar radiation, the distance between the camera and the object, the field
of view, the fur of the animal, etc. are challenging factors reducing the use of
thermal imaging in the area of object detection and identification.

Two alternatives to classical images to detect animals or objects weather-
independent are radar and Light imaging, detection and ranging (LiDAR).
Those come mostly from the automotive sector and are mainly designed for
autonomous driving. The authors in [25] offer a dataset for deep learning based
three-dimensional object detection. They provide a frame-synchronized dataset
of traffic-relevant classes collected using a radar, a LiDAR, and an optical cam-
era. In [26], the authors used a Convolutional Neural Network (CNN) to classify
pedestrians, cyclists, or cars based on radar measurements for road user clas-
sification. The road environment significantly differs from our wildlife and is
therefore not further considered.

Commercial companies offer hybrid approaches like, for example, the Ad-
vanceGuard system4. They use radar to detect activity in an area like an air-
field. A camera zooms automatically into the area of interest, and an alarm is
triggered. This should help prevent collisions between aircraft and wild animals.
Such systems are suitable for protecting an area with a free field of view, such
as an airfield. They are hard to deploy in farmland. Also, the maintenance in
harsh environments and the power supply are challenging.

To the best of our knowledge, there is no framework for wildlife images avail-
able that 1) offers a complete toolchain for automated image labeling, including
pre- and postprocessing of the images, 2) is model-independent and allows the
training of arbitrary detection models, 3) is modular and can be adapted to
different input and output requirements and 4) also focusses on the bad, hard
to detect objects in challenging environmental environments.

4https://navtechradar.com/solutions/advanceguard/, accessed: 2023-12-01

https://navtechradar.com/solutions/advanceguard/
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2.3 State of the Art: Image Datasets

Detecting animals or objects in images is a common task and is often used
as an example in tutorials. Challenges like the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)5 exist for some datasets: Who can detect
more objects correctly from the given images? This section lists the publicly
available datasets that might be relevant to our work.

When talking about sources of images, most people suggest internet image
databases like flickr6 or Google Images7. They offer a vast amount of images.
The problem with the results is the quality and the source: Most images – espe-
cially the ones from flickr – are often high-quality, glossy ones. Unfortunately,
one can sometimes not distinguish: Is it a photo, a drawing, an AI-generated
image? Also, the license has to be considered. Therefore, we do not use images
from these internet databases for training.

The ImageNet dataset8 [27] is a commonly used dataset for training and eval-
uation of all kinds of classification and object detection algorithms. It has 1000
object classes, 1,281,167 training images, 50,000 validation, and 100,000 test
images. Therefore, it is used for the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). It contains four classes relevant to our project, including
the grey wolf.

Common Objects in Context (COCO)9 [28] is a large set of segmented ev-
eryday high-quality objects from up to 91 classes. It does not contain wolf
images.

The PASCAL (Pattern Analysis, Statistical Modelling and Computational
Learning) dataset10 was mainly developed between 2005 and 2012. It contains
several thousands of images with annotated and partly segmented objects from
up to 20 classes, including dogs.

Kaggle is an online platform for data science competitions and belongs to
Google. It hosts a dataset called Dogs vs. Wolves11 containing 1000 dog and
1000 wolf images. The dataset contains high-quality images cut to the animals,
i.e., full-scale animal images without a lot of background.

ObjectNet12 [29] contains objects from 313 classes. In contrast to other
datasets, the objects are shown from different angles. This work aims to identify
common objects even if they are not aligned as usual but rotated.

We found no publicly available dataset offering high-resolution camera trap
images of European grey wolves in their natural habitat. Instead, the existing
datasets show high-quality images with full-scale wolves. For us, especially the
hard-to-see wolves in bad light conditions and dirt on the lens are of interest:
We need images that are as realistic as possible. Those images are considered
unusable, removed, and not published for most datasets. Therefore, we decided
to collect our own wolf dataset as described in Chapter 5.

5http://image-net.org/challenges/LSVRC/, accessed: 2023-12-12
6https://flickr.com/
7https://images.google.com/
8https://image-net.org/
9https://cocodataset.org

10http://host.robots.ox.ac.uk/pascal/VOC/
11https://www.kaggle.com/harishvutukuri/dogs-vs-wolves
12https://objectnet.dev/

http://image-net.org/challenges/LSVRC/
https://flickr.com/
https://images.google.com/
https://image-net.org/
https://cocodataset.org
http://host.robots.ox.ac.uk/pascal/VOC/
https://www.kaggle.com/harishvutukuri/dogs-vs-wolves
https://objectnet.dev/
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2.4 State of the Art: Image Labeling

Collecting or having images is one task; knowing what is inside is another.
Annotating images is essential to train a model for computer vision. In our
case, we screen the images, mark the wolves using a box, and assign the class
wolf to it. This is a tiring and annoying job, especially for animals in the
background or barely visible. Therefore, we evaluated tools that can reduce
the workload for individual persons. Further, the import of the images and
the export of the results should be executable automatically. The labeling task
should be as simple as possible so non-experts can contribute.

Several tools like LabelImg13 or its successor Label Studio14 as well as several
web services like cvat15 exists to support the users for the labeling. The user
draws a box around the object and assigns the corresponding class. This requires
certain expertise, effort, and concentration.

Other tools reduce the workload for humans during this labeling. The au-
thors in [30] created thousands of pixel-accurate labels for a cancer cell classifier
with only a few manually labeled training data. In [31], the authors automat-
ically train a model for object detection. They present the object in front of
a steady background for the training. This kind of training can be done with
clearly separated objects that can be distinguished from the background. In our
case, we deal with animals that are highly adapted to their environment and
not easy to see.

Labeling images for a classifier using a human-in-the-loop system is the ob-
jective of [32]. In their approach, a user manually marks the regions and assigns
them to a class. However, it focuses on training data for a classifier and still
requires a lot of user interaction, like marking the corresponding areas.

Replacing the human during the labeling task with a second detection model
is done by the authors in [33]: They use two or more models to automatically
label the foreground objects in images. It is not optimized for partly visible
objects in the background.

OneLabeler, as presented in [34], is a framework for creating flexible labeling
tools. They do not consider the crowdsourcing approach, allowing even non-
experts to participate in the labeling.

Revolt, as presented in [35], is the most promising approach for our appli-
cation. The authors distribute the labeling task to several co-workers to reduce
the workload for the individuals. Our approach differs in three main points:
Firstly, we optimize our web-user interface to the minimum and select the most
probable image based on the statistics of the user votes, whereas Revolt requests
more detailed information from the user. Secondly, we use a machine learning
model to create the objects to label, further reducing the developer’s effort.
Thirdly, our iterative approach is developed to label, evaluate, and validate a
continuously adapted model.

We found no software that easily offloads the labeling task to many non-
experts, offers interfaces for import and export, and can also be used for image
evaluation. Therefore, we decided to create our Wolf-or-Not web service as
introduced in Chapter 7.

13https://github.com/heartexlabs/labelImg
14https://labelstud.io/
15https://github.com/opencv/cvat

https://github.com/heartexlabs/labelImg
https://labelstud.io/
https://github.com/opencv/cvat
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2.5 State of the Art: Wolf Deterrents

Wolves are pretty clever: They do not just approach a fence and overcome it.
They examine the surroundings and try to find the weak spots. Using deterrents,
the time the wolf examines a fence should be made as uncomfortable as possible.
Ideally, it gets annoyed, neglects the farm animals, and hunts wild animals like
roe deer or wild boars.

Wolves are protected animals. Therefore, the literature about deterrents in
this area is sparse and results from dogs as the closest relatives are often used
instead. Most works focus on the sensible senses of the wolf: the sight and
the hearing. The behavioral analysis of the deterrents is done by our project
partners from the Professorship of Animal Husbandry, Behaviour and Welfare at
the Justus-Liebig University in Gießen, Germany. Here, we give a brief overview
and list the deterrents available on the market.

The effectiveness of ultrasound as a deterrent varies and depends on the
objective. Some are used to get their attention by evoking the startle reflex
[36] others for causing discomfort [37], which is influenced by the perceived
Sound Pressure Level (SPL). Also, the rising time of the sound is essential.
Experiments show that suddenly starting, loud sounds with more than 93 dB
are effective deterrents.

For dogs, the authors in [38] observed aversive reactions to ultrasound fre-
quency sweeps from 17 kHz to 55 kHz with an average output of 117 dB to
120 dB, but not to the same frequency sweep at a lower SPL. They also tested
the effect of light flashes on the dogs, which highly depended on the surrounding
light level.

Also, loud noise like gunshots, shouting, or music can deter dogs and wolves
according to the literature [39, 40, 41, 42].

In the project, we also have to consider the effect on the environment and
people living nearby. Therefore, we can not create arbitrary loud sounds. We
have to consider the limits even for the ultrasound, which humans usually do
not hear. According to the parameters above, we searched for devices capable
of deterring dogs and wolves. They should be able to operate via battery and
be available off-the-shelf. We found three devices. The WAS W13016 light spot
was originally developed for construction machines and is available in flood and
spot versions with different light angles. Due to its original purpose, it can be
operated on battery and is well protected from harsh outdoor environments.
Our hardware can pulse it with 20Hz, so it can be used to create disturbing
flashes. We also found two ultrasound deterrents. The M161 Cannon17 outputs
directed pulses of a fixed frequency with a long range. The M175 Repeller18

offers a shorter but broader range. Here, the frequency can be changed on the
device, allowing the validation of several frequency bands.

Table 2.1 compares those three commercially available devices according to
their datasheets. We list the output type, the expected range, and the required
power.

All three deterrents can work on wolves. The W130 spot gives a bright light
that can confuse and deter the wolf, especially when flashing. Light works best in

16https://www.was.eu/de/arbeitsscheinwerfer/w130-8000/1214I/2276
17https://www.kemo-electronic.de/en/Car/M161-Ultrasonic-Power-Cannon.php
18https://www.kemo-electronic.de/en/Car/M175-Animal-Repeller-Ultrasonic-High-

Performance.php

https://www.was.eu/de/arbeitsscheinwerfer/w130-8000/1214I/2276
https://www.kemo-electronic.de/en/Car/M161-Ultrasonic-Power-Cannon.php
https://www.kemo-electronic.de/en/Car/M175-Animal-Repeller-Ultrasonic-High-Performance.php
https://www.kemo-electronic.de/en/Car/M175-Animal-Repeller-Ultrasonic-High-Performance.php
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Model Type Output Range Power

WAS W130 Spot Light
8000 lm, manually
pulsed with 20Hz

5m to 10m 80W

M161 Cannon Ultrasound
directed 22 kHz
pulses with 120 dB

300m 1.8W

M175 Repeller Ultrasound
8 kHz to 41 kHz
siren-like with
max. 135 dB

100m 1.8W

Table 2.1: Comparison of different of-the-shelf deterrents according to their
datasheets. All operate at 12V. The effective range of the light depends on the
direction and the ambient light. Here, we only give an estimate for the night.
The M161 is directed and, thus, has a longer range than the M175. The given
ranges are from the datasheets. The project partners are evaluating the effective
range against wolves.

dark environments, as the eye needs time to adapt to different brightness levels.
Therefore, we assume that the effect is reduced during dusk and dawn and not
there during daytime. The M161 cannon generates pulses of loud ultrasound.
According to the literature, this should work as a deterrent. Unclear is the effect
of the directivity. The output of the M175 is not as directed as that of the M161.
It outputs a siren-like sound with an adaptable frequency. Our project partners
are also evaluating the effect of all three deterrents regarding the range, impact,
and sustainability.

2.6 State of the Art: Wireless Technologies

As discussed in the problem statement, we will implement a wireless connection
between the deterrents and the detection. This simplifies the setup, reduces the
weight, offers more flexibility, and reduces the risk of failures.

Wireless communication in the area of sensing has been a topic for several
decades, especially using small, constrained devices. Here, several concepts,
architectures, and terms that are still relevant for this kind of communication
have been developed. The objectives are low energy, flexible connection, and
many devices in one network.

Wireless Sensor Networks (WSNs) are one option to transmit information
with such requirements. Their application is vast and closely connected to other
applications and terms. For example, Wireless Sensor / Actuator Networks
(WSANs) include actuators, i.e., perform some actions based on the sensings.
The Internet of Things (IoT) uses in some variations WSN-based technologies.
Ad-hoc networks focus on dynamic networks without a fixed infrastructure. In
this work, we use the term WSN as the most generic one, even though we
are dealing more with a version of an ad-hoc WSAN. A detailed introduction
to infrastructure-less networking concepts is given in [43]. [44] gives a general
introduction to WSNs.

A WSN usually describes sparsely distributed, usually low-energy devices –
called nodes – collecting and forwarding data to a certain point in the network
wirelessly. The nodes can be mobile and reorganize their wireless connections
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automatically if moved. Sensor networks were first used in military applications
during the Cold War to detect submarines in the ocean [45]. In 2003, the
IEEE 802.15.4 standard defined a Physical Layer (PHY) and Medium Access
Control (MAC) for low datarate Wireless Personal Area Networks (WPAN).
Those operate usually in the license-free 2.4GHz ISM-band and can be used
worldwide without charge. This increased the research and the applications in
this field, resulting in various applications like monitoring goods, buildings, or
general environmental monitoring. New technologies and mechanisms like IPv6-
based WSNs [46] or the discovery of services [47] simplified the application and
opened it to a broader field. Today, those technologies are used as a base to
control the smart homes, for example, with Thread19 and Matter20.

Some of the terms and concepts from this area are relevant to this work
even though they are combined with different underlying technologies. In this
section, we focus on the transmission technologies.

IEEE 802.15.4 [48] is a flexible and powerful technology used for WSNs and
other related technologies. It is mainly used in the 2.4GHz Industrial, Scientific
and Medical (ISM) band that allows global usage. The communication range is
similar to WiFi and limited to approximately 50m to 150m. The actual range
depends on the overall setup. Mesh technologies are commonly used to extend
the communication range. Here, the nodes create dynamic links and forward
the messages to other nodes in the network, allowing mesh-wide communication.
Usually, a border router coordinates the connections (routes) inside the network
and also enables connections to outside, i.e., the internet. Direct communication
between the nodes is usually also possible.

Bluetooth is related to IEEE 802.15.4, but the achievable communication
range is more restricted and lies in the range of 10m to 100m. The typical
range is even lower and too low for our application.

WiFi, as known from most modern laptops, mobiles, tablets, etc., is another
option. It can form a local network used to activate the deterrents in direct
proximity. The disadvantage is a comparable low range with 50m to 150m –
depending on the environment, WiFi standard, and antenna. In the worst case,
this is too little to activate the deterrents. Furthermore, the most recent WiFi
technologies focus on high datarates and not on low energy, remote deployments
as required for our application.

Cellular networks like 5G require the network operator to place base stations
to supply sufficient coverage. Lower frequencies can be used to cover remote
areas with fewer base stations. Here, a base station can achieve a higher range
of several kilometers. How to keep up the communication if the infrastructure
fails is discussed in several works [49, 50, 51]. To the best of our knowledge, no
currently available system supports such an infrastructure-less 5G mode.

Another option for communication in remote areas is the satellite-based in-
ternet service Starlink21. The satellites are less affected by earth-based disasters,
network outages, or just a lack of coverage. As a drawback, it requires a direct
line of sight to the sky and requires with 50W to 75W quite a lot of energy.

Another provider for satellite-based connectivity is Inmarsat22. It offers
worldwide phone and data connections and is commonly used for emergency

19https://www.threadgroup.org
20https://buildwithmatter.com/
21https://www.starlink.com/
22https://www.inmarsat.com

https://www.threadgroup.org
https://buildwithmatter.com/
https://www.starlink.com/
https://www.inmarsat.com
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messaging. The costs for worldwide communication are very high or – in the
case of emergency messages – limited to only a few messages.

SigFox23 provides an infrastructure for long-distance low data transmissions.
It is used to transfer meter information to the electricity or gas provider. The
amount of data and the number of messages per day are restricted to few bytes.

LoRa is a low-power, long-range communication standard. It can achieve
15 km with a direct line of sight [52]. In some cases, also significantly longer
distances are possible as the current record of 832 km shows24. The data trans-
mission between nodes in the communication range can be done without a base
station or network coordinator. LoRa operates using different frequency bands,
while for Europe, the frequencies around 433MHz and 868MHz are permit-
ted. The free field communication range varies from several hundred meters
to several kilometers, allowing simple, direct communication without a mesh
infrastructure. Duty cycle requirements limit the length of transmittable data
and the number of packets per hour. Several manufacturers offer hardware for
various applications for usually comparatively low prices. It is the physical layer
of LoRaWAN and has a huge community.

LoRaWAN extends LoRa with a network layer and turns it into an
infrastructure-based IoT communication standard. It is managed by the LoRa
Alliance25. Provider like the community-based The Things Network26 (TTN)
or Helium27 form a network to transmit small messages to internet servers. As
LoRaWAN is based on LoRa, similar properties hold for the communication
range and properties.

LoRa is also used for satellite-based communication. For example, TinyGS28

is a global ground station network for LoRaWAN-based satellites. It focuses on
communication with flying objects like drones, satellites, etc. and allows cheap
communication with those self-built devices. It is not designed to communicate
with ground-based devices like in our case.

Lacuna 29 uses LoRaWAN to communicate with sensors and trackers using
satellites. They offer worldwide coverage for low-power sensing- and tracking
devices. The satellites receive the sensor messages and relay them back to
ground stations after a short time. It can not be used for the time-critical
triggering of our deterrents.

Table 2.2 lists those technologies and their main properties. In the first
column, we evaluated, if they are commonly used to transmit data to a central
internet server and if they usually rely on infrastructure. Here, we distinguish
between no, yes (using classical base stations), or if they use satellites or drones
as their communication partner. If applicable, we also give the typical maximum
communication range. If available, we give the range of the initial costs, i.e., for
the end devices, and if a subscription is required, leading to further costs. We
also give an idea of if the device can run on battery power.

The number of technologies offering wireless connectivity, even in remote
environments, is continuously increasing. This is done either by using special

23https://www.sigfox.com/
24https://www.thethingsnetwork.org/article/lorawan-world-record-broken-twice-

in-single-experiment-1, accessed: 2023-12-25
25https://lora-alliance.org/
26https://www.thethingsnetwork.org/
27https://www.helium.com
28https://tinygs.com/
29https://lacuna.space/

https://www.sigfox.com/
https://www.thethingsnetwork.org/article/lorawan-world-record-broken-twice-in-single-experiment-1
https://www.thethingsnetwork.org/article/lorawan-world-record-broken-twice-in-single-experiment-1
https://lora-alliance.org/
https://www.thethingsnetwork.org/
https://www.helium.com
https://tinygs.com/
https://lacuna.space/
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5G ✓ ✓ 600m e ✓ ✓

Starlink ✓ N/A eee ✓ ✗

Inmarsat ✓ N/A eee ✓ ✓

sigfox ✓ ✓ 40 km e ✓ ✓

LoRa ✗ ✗ 15 km e ✗ ✓

LoRaWAN: TTN ✓ ✓ 15 km e ✗ ✓

LoRaWAN: Helium ✓ ✓ 15 km e ✓ ✓

TinyGS ✓ N/A e ✗ ✓

Lacuna ✓ N/A unknown ✓ ✓

WiFi ✗ ✗ 150m e ✗ ✓

IEEE 802.15.4 ✗ ✗ 150m e ✗ ✓

Bluetooth ✗ ✗ 100m e ✗ ✓

Table 2.2: Comparison of selected radio technologies we reviewed in this work in
their typical use cases. For the infrastructure, we distinguish if the technology
is usually used with infrastructure (✓), no infrastructure is used (✗), or if it is
based on satellite communication ( ). The marked line highlights LoRa, which
we use in this work.
Costs: e: <50e, ee: 50 - 100e, eee: >200e. We consider a device to be battery-powered if

the average power is ≤10W. (Prices and data from Dec. 2023)
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technologies for a longer communication range, deploying new base stations,
or using satellite-assisted technologies. We require direct, reliable, and ideally
low-power communication between our devices. Internet access is not required.
More critical is activating devices nearby on time in a range of several hundred
meters. Cellular networks like 5G are aiming at this kind of device: small, low-
power devices communicating only a little. Unfortunately, the coverage can not
yet be guaranteed for our remote deployment areas. Therefore, we focus more
on the technologies, not relying on local ground stations. Satellite-based tech-
nologies offer worldwide coverage but are expensive, require a lot of energy, or
have a notable delay, making a timely activation impossible. Sigfox is a promis-
ing technology with a long-range but very limited in the number of messages.
The standard technologies in wireless communication are WiFi, IEEE 802.15.4,
and Bluetooth, which are widely used. Unfortunately, their communication
range is quite limited. One can extend it with multihop- or mesh-architectures.
However, this increases the complexity of the overall system and required infras-
tructure. LoRa-based technologies have several advantages: they are low-power,
cheap hardware is available, they can be configured flexibly, and they offer a
sufficiently long communication range. LoRaWAN is based on a base station
and does not allow direct communication between the nodes. Therefore, we
decided to use the plain LoRa: It offers the same advantages regarding energy,
costs, range, and configuration but allows direct communication between the
devices without needing a central coordinator, leading to a higher reliability for
our scenario.

2.7 Summary and System Design

Most animal detection work is based on classical RGB images, which have sev-
eral advantages. Cameras are widely used in object detection and are available
in all possible resolutions and prices. A large number of models exist for differ-
ent applications and requirements. They have drawbacks in bad lighting and
weather conditions. The application of those cameras varies between camera
trap analysis, aerial counting, and identification of the animals. Several works
mention the challenges of changing the background of different cameras or po-
sitions. We also experienced such problems in our first studies and decided to
create our ShadowWolf to deal with them.

Thermal imaging is an often suggested alternative or extension to the classi-
cal images, especially during fog or rain. We briefly evaluated those images by
ourselves. Figure 2.4 shows pictures taken with two thermal cameras. In cold en-
vironments, one can detect mammals but not identify them due to the typically
low resolution of the thermal photos. The animals can barely be distinguished
in warm environments compared to a heated area, as shown in Figure 2.4a.
Some cameras offer a mixed mode, i.e., they combine a standard photo with a
thermal one, as depicted in Figure 2.4b. This combination might help during
the daytime but fails during the night. Furthermore, thermal cameras are costly
(our FLIR E6XT costs approximately 1500 e) and, therefore, not affordable for
larger deployments in farming. Our findings match with the results from the
literature [24].

Other sensors like LiDAR, Radar, etc., offer a three-dimensional and
weather-independent representation of the environment. The research in this
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(a) A thermal image taken during sum-
mer. The animal in the front can be
seen but can not be identified. Part
of the area at the right is heated by
the sunlight, making detecting and iden-
tifying warm-blooded animals difficult.
This picture was taken using a Blackview

BV9800 using a built-in FLIR Lepton
thermal camera module with a resolution
of 80 × 60 pixels.

(b) Several sheep on a meadow: The tem-
perature of the sheep is quite close to the
grass. This picture was taken in mixed
mode, i.e., combined with a normal im-
age, showing more details and structures.
The camera was a FLIR E6XT at a reso-
lution of 240 × 180 pixels.

Figure 2.4: Comparison of two thermal images taken with different cameras.

area is mainly from the automotive sector and focuses on detecting bikes,
pedestrians, and other things relevant to autonomous driving. Some
applications exist where this kind of sensor is used in a hybrid scenario joint
with camera systems. Also, those sensors are expensive and not affordable for
larger deployments.

The majority of the work in the area of animal detection is based on stan-
dard RGB images. Therefore, we decided to use classical surveillance outdoor
cameras for this work: They are available at different prices (and qualities),
offer good low-light capabilities, and sometimes even provide infrared light for
night images. Also, the lens type and, thus, the camera’s field of view can be
selected. They produce standard RGB or greyscale images, which allows us to
use traditional object detection or classification algorithms. We describe how
we collect our dataset, which hardware we use, and the challenges in Chapter 5.

Existing databases with read-to-use images for machine learning are avail-
able online. For many applications, those are an alternative to collecting own
datasets or at least a suitable extension for some cases. Section 2.3 discusses
the ones relevant to our work. Only a few of them contain images of wolves.
One of the most extensive ones is the ImageNet dataset. Unfortunately, it has
high-quality images and is not very relevant to us. The Kaggle datasets contain
high-quality images of dogs and wolves. Those do not show the animals in their
natural environment, but a cutout. Such images are good for the classification
of other photos, but not for our application. This strengthens our decision to
collect a new wolf-specific dataset in Chapter 5.

Collecting images is only the first step. Next, they have to be screened,
evaluated, and labeled. We would like to automate this task and be able to
integrate it in other processes. Further, the tool should be able to distribute
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the work to many people, ideally online. We evaluated the existing tools in this
area in Section 2.4, but found nothing suitable for us. As a result, we created
our own app Wolf-or-Not as introduced in Chapter 7.

Most work focuses on creating new or optimizing models or architectures for
their application scenarios. They state the challenges in getting good training
data or updating the models to new domains, new camera positions, and, thus,
new backgrounds. To the best of our knowledge, no framework offers the option
to continuously label and analyze camera trap images and be model-agnostic
simultaneously, as provided by our ShadowWolf as provided in Chapter 8 of this
work.

Besides those software- and model-focussed tasks, the deployment and evalu-
ation are part of this work. One objective is to deter the wolves. Here, we listed
the commercially available components that have a chance of working on wolves
in Section 2.5. The exact effect of those on the wolves, the effective distance,
as well as the sustainability of the deterrents over time are evaluated by our
project partners. Here, we activate those three deterrents using our WolfNet as
described in Chapter 9.

Wireless technologies – especially in the context of the deployment – have
several advantages for this work. We compared the common technologies and
concepts in Section 2.6 and Table 2.2. We require a system that does not rely
on infrastructure, like cellular networks (4G, 5G, etc.). The price should also
not be too high, as each deployment requires plenty of devices to communicate.
This also includes the running costs. It should be possible to communicate
directly, as this reduces the complexity of the overall system. The LoRa-based
technologies offer the best performance regarding our metrics and are commonly
used for environmental monitoring. Therefore, we describe and evaluate LoRa
in detail in Chapter 4.

We searched for WSNs based on LoRa and found a lot of hobby projects
and some research. For example, the authors in [53] present a LoRa-based field
monitoring system for the Andean area. Similarly, [54] evaluates the efficiency of
LoRa for smart farming. In [55], the authors used LoRaWAN for landslide and
rockfall monitoring, while [56] focusses on flood monitoring. They all transmit
the data to a central entity and do not communicate directly with each other. We
found no well-documented work offering a resilient LoRa-based sensor network
that does not require a central coordinator. Therefore, we decided to write our
WolfNet in Chapter 9.

The next chapter will introduce the field of machine vision and clarify the
most important terms and concepts.
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Chapter 3

Machine Vision

In 1943, the neurophysiologist Warren Sturgis McCulloch and the logician Wal-
ter Pitts discussed in their work A logical calculus of the ideas immanent in
nervous activity [57] how the nervous activity correlates with neural activity
using propositional logic. They modeled the relationships using simple logic op-
erations. The results from this work can be seen as the birth of deep learning:
The behavior of the brain, or more specifically, the neocortex, is mimicked by
the layers of an Artificial Neural Network (ANN). Figure 3.1 shows such an
example ANN. The circles represent the neurons: Three green neurons repre-
sent the input layer, and the two red neurons represent the output layer. The
yellow neurons have neither an input nor an output and, thus, are called hidden
layers. The example has two hidden layers consisting of 5 nodes each. For real
applications, the number of hidden layers is usually higher. The output of each
layer provides the input of the following layers.

Training creates connections between the individual neurons of the layers.
A specific input should produce a corresponding output. In our case, the input
is an image, and the output is the class wolf or another animal. The objective
is to connect the neurons so that, ideally, all wolf images are detected correctly,
and nothing is detected wrongly as a wolf. The input and the expected output
must be known to train such a neural network. One can calculate the difference
between the output of the neural network and the desired, known output. This
difference, i.e., the error between both, has to be minimized. In the training
phase, the connections between the individual nodes are varied till the error
becomes minimal. The resulting connections between the individual nodes are
called weights. This trained network should now give the same output when it
is fed with a similar input.

For image processing, as performed in this work, the input layer is the image
in a normalized format like, for example, 224 × 224 pixels and three colors, called
a tensor. The output is the class detected in the image: If a neural network can
detect 100 different types of objects – called classes – the output layer size is
100. The exact functionality of the hidden layers depends on the architecture.
We provide an overview of those in Section 3.2.

To give an example for the numbers: A widely used model is the Mo-
bileNetV2 model [58]. Google developed it for mobile phones and embedded ap-
plications. For example, the implementation in TensorFlow consists of 156 lay-
ers and 3,504,872 trainable parameters. It maps an input image of the size
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Figure 3.1: A simple example of an artificial neural network. The three green
nodes (circles) are the input layer. The yellow nodes represent the two hidden
layers with five nodes each. Two red nodes form the output layer. Each node
represents one neuron. The arrows show the interconnections.

224× 224 pixels and three colors to one out of 1000 classes from the ImageNet
dataset. Other models can easily have more than 300 layers and 80,000,000
parameters. Training all those parameters to achieve a good mapping between
the input and the output layer requires a lot of vector computations. In contrast
to a standard, general-purpose Central Processing Unit (CPU), Graphics Pro-
cessing Units (GPUs) are optimized for this kind of parallel vector calculations.
An NVIDIA RTX 4090 GPU has 16,384 cores, yielding to 82.6× 1012 Floating
Point Operations Per Second (FLOPS). Compared to that, a high-end CPU
like the Intel i9-13900 provides 24 cores and 32 threads, yielding approximately
10× 109 FLOPS – a significant difference of a factor of 8260. Especially for the
training, using a GPU can yield a drastically increased performance compared
to a modern multicore CPU.

The following sections will give an introduction to the main terms, concepts,
and frameworks in the area of machine vision. Section 3.1 describes and explains
the application of the three main tasks: classification, object detection, and seg-
mentation. Section 3.2 explains this work’s most important terms and concepts,
whereas Section 3.3 focuses on the widely used frameworks. Section 3.4 focuses
on the tools, and Section 3.5 introduces the metrics we use in this work.

3.1 Tasks in the Area of Computer Vision

In computer vision, three image detection tasks can be distinguished: classi-
fication, object detection, and (semantic) segmentation. Figure 3.2 shows one
example for each task. The classification is the most fundamental task. Those
models give a list of objects, including the probabilities being in the image.
Our example Figure 3.2a might return wolf, grass, and tree – depending on the



3.1. TASKS IN THE AREA OF COMPUTER VISION 27

(a) Classification returns
a probability of an object
being in the image. In this
case, the probabilities for
the class wolf, grass, and
tree should be non-zero.

(b) In the case of object

detection, the model re-
turns a class and a cor-
responding bounding box.
In contrast to the classi-
fier, we also get the ob-
ject’s location.

(c) In the case of segmen-

tation, an area of interest
marked with a mask. It is
mainly used to mark the
objects in the foreground
for further processing.

Figure 3.2: The three main tasks in computer vision are classification, object
detection, and segmentation.

training data and classes. Those models often identify images and automatically
perform context-sensitive searches on images: Show me all images with boats.

Several models with different properties exist for the classification. Mo-
bileNet V2 [58], and MobileNet V3 [59] were developed by Google researchers.
They focus on running on mobile phones and embedded devices. The Visual
Geometry Group (VGG) from the University of Oxford introduced the VGG
model [60]. This one focuses on (at the time of development) large-scale images
with a size of 224 × 224 pixels. Residual Networks (ResNet) [15], developed
by Microsoft, is another famous convolutional neural network architecture. It
is available in different depths, resulting in other performances. Besides the
commonly used ResNet-50 with 50 layers, ResNet-18, ResNet-34, ResNet-101,
and ResNet-152 with 18, 34, 101, and 152 layers, respectively, are available.

Another task in computer vision is object detection, as displayed in Fig-
ure 3.2b. Algorithms in this area return a bounding box and the class of the
object inside this box. Most architectures use deep learning and convert the
object detection problem to a classification problem. They create many small
boxes, run the classification on those, and combine the results using regres-
sion. This is, for example, done by the Faster R-CNN [61] architecture. Here,
a Region Proposal Network (RPN) creates proposals – so-called Region of In-
terests (ROIs) – which are boxes representing part of the image. Those are
analyzed using a classifier like the VGG, as mentioned above. Performing Non-
Maximum Suppression (NMS) on the results from the classifier returns one class
for one box. YOLO (You Only Look Once) [62] optimizes the classical Faster
R-CNN approaches by simplifying the structure and combining the box creation
and classification. RetinaNet [17] is a different architecture focusing on small
and dense objects like aerial and satellite images with the drawback of higher
memory- and computing requirements. The SSD (Single Shot MultiBox Detec-
tor) architecture [63] uses a classifier like the ResNet-34 or VGG as a base. The
SSD replaces the final classification layers and calculates the probabilities of
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objects being in predefined boxes out of the classifier’s features. The advantage
is fast execution time with reduced precision of the output boxes.

The (semantic) segmentation is the third task in computer vision. Fig-
ure 3.2c shows the output of classes for this class: They do not only return a
bounding box but a mask framing the object of interest. Segmentation is of
interest for several applications. One is gesture recognition. For that, not only
a human has to be detected, but also the arms, hands, the head, etc. Segmen-
tation is one step in this direction. Another task is the foreground detection.
The segmentation detects the objects in the foreground by understanding the
overall image more deeply. Those foreground images are then identified using
a classifier. DeepLabV3 [64] by Google adapts a pre-trained ResNet classifier
to a segmentation model. The resulting model is able to detect 20 foreground
object classes and one background class. FCN (Fully Convolutional Networks
for Semantic Segmentation) [65] is another segmentation architecture. They
adapt classification networks to a fully convolutional neural network, achieving
pixel-wise segmentation.

In this work, we are interested in detecting predators, i.e., the class and the
positions. Therefore, we focus on object detection algorithms. A classification
could also be used but requires further image preprocessing, i.e., detecting an
object, creating a box, and identifying the animal in the box in a second step
using a classifier. This is the way how most modern object detection algorithms
work internally. Using a classifier on the complete image will not work as ex-
pected, as the wolves usually only cover a small amount of the image and are not
the dominant class. We can also use segmentation, but it requires significantly
more effort to label the images and run the model. Anyhow, our architecture
offers the flexibility to use any of the three classes of algorithms.

3.2 Terms and Concepts in Neural Networks and

Computer Vision

A vast amount of literature and tutorials exists in the area of neural networks,
machine learning, and computer vision. Several books like [66] introduce neural
networks and machine learning more abstractly. [67] gives a German overview
about AI, the fundamentals and applications. The author in [68, 69] offers an
English and German introduction to writing a neural network using Python.

On the internet, Stanford University offers an introduction to CNN1. From
the Harvard University, an online course focussing on embedded systems is avail-
able2. Also, the widely-used frameworks PyTorch3 and TensorFlow4 offer good
tutorials with a lot of examples and references to the corresponding literature.

Many new terms and definitions arise, especially for newcomers in this area.
This section gives a brief overview without claiming completeness.

1https://cs231n.github.io/convolutional-networks/ accessed: 2023-11-27
2https://harvard-edge.github.io/cs249r_book/ accessed: 2023-11-27
3https://pytorch.org/tutorials/ accessed: 2023-11-27
4https://www.tensorflow.org/overview accessed: 2023-11-27

https://cs231n.github.io/convolutional-networks/
https://harvard-edge.github.io/cs249r_book/
https://pytorch.org/tutorials/
https://www.tensorflow.org/overview
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Figure 3.3: Graphical representation of a neuron

3.2.1 Neuron

An artificial neuron, as used in ANNs, is a mathematical function described by
Equation (3.1) and depicted in Figure 3.3. We use the parameters as defined in
Table 3.1.

Parameter Meaning
xi The n+ 1 inputs
yk The output of the layer k

wki The weights for the input i of the layer k

φ The transfer function / activation function (ReLU)

Table 3.1: The parameters for an artificial neuron as described by Equa-
tion (3.1).

The input x0 is often often set to +1 making the weight wko the bias. This
bias helps to shift the activation function to the desired threshold. This leads to
n independent inputs for this layer. The remaining inputs x1...xn are multiplied
with the corresponding weights w1...wn and summed up. The activation func-
tion – in most cases, the Rectified Linear Unit (ReLU)-function as described
in Section 3.2.2 creates the output of this layer. The weights are varied during
the training phase until the input matches the expected output for, ideally, all
training data.

yk = φ

(

n
∑

i=0

wkixi

)

(3.1)

3.2.2 Rectified Linear Unit (ReLU)

The Rectified Linear Unit (ReLU) is a rectifier and can mathematically be
described as shown in Equation (3.2). It is widely used in neural networks as an
activation function on the neuron (c.f. Section 3.2.1) to activate the output to
another layer. It results in sparse activation by suppressing outputs below 0 and
only using outputs greater than 0, as shown in Figure 3.4. Furthermore, it can
efficiently be computed. The activation function is often denoted by phi (φ).

f(x) = φ(x) = max(0, x) (3.2)
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Figure 3.4: The relationship between the input x and the output φ(x) of the
ReLU function.

3.2.3 Logit

A Logit is an unnormalized prediction. Predictions are usually in the range
between 0 and 1. A layer might output several predictions using other scales,
i.e., numbers outside this range. After normalizing them, one gets the required
normalized predictions.

3.2.4 Tensor

A tensor is a multidimensional array of numbers and is often used for data rep-
resentation in machine learning, especially in neural networks. Equation (3.3)
shows the differences. a is a scalar, i.e., a number. Adding one dimension results
in a vector like b or, when adding another dimension, a matrix, like c. A tensor
like d is the most generic version and can have arbitrary dimensions. An image
with three colors (RGB) and a size of 160 × 160 pixels results in a tensor with
the shape (160, 160, 3).

a = 1

b =

[

a1
a2

]

c =

[

a11 a12
a21 a22

]

d =









[

a11 a12
a21 a22

] [

b11 b12
b21 b22

]

[

c11 c12
c21 c22

] [

d11 d12
d21 d22

]









(3.3)

3.2.5 Input Size

The image fed into a neural network should match the desired size of the net-
work. Normal pictures often have an aspect ratio of 4:3 or 16:9 and a resolution
of, for example, 1920× 1080 pixels. Neural networks usually require squared
images of, for example, 128 × 128 or 160× 160 pixels. Sometimes, the input
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Figure 3.5: In a pooling layer, the input is divided into partitions. For the most
common type of pooling layer, max pooling, the output is the maximum value
of each partition, as shown in this figure.

is adapted automatically by using padding and rescaling. Not performing this
kind of adaptation – manually or automatically – results in significantly poorer
performance.

3.2.6 Pooling

Pooling is a type of downsampling of the input and is commonly used in CNN
(c.f. Section 3.2.14). The input is divided into several partitions. The down-
sampling is performed for each of the partitions and reduces the dimension of
the output. The most common pooling method is the max pooling as shown
in Figure 3.5: From each partition, the maximum value is used for the lower-
dimension output. This method reduces the complexity of the input while only
focusing on the most dominant parts of the input. This downsampling general-
izes the data and prevents overfitting, i.e., creating a model that is not generic
enough.

3.2.7 Feature Map

A feature in general computer vision is a property of the image, like an edge or
a circle. Therefore, the output of a convolutional layer is also called a feature
map. It focuses on the critical shapes and structures while suppressing the less
relevant parts of the image. This feature map is then mapped to the individual
output classes.

3.2.8 Quantization

Models in machine learning are computationally heavy and require a GPU or
a powerful CPU even to run the inference. Most of the operations rely on
floating-point numbers or even doubles, which require 32 bit or 64 bit of mem-
ory, respectively. Quantization reduces the resolution and, thus, the required
memory by approximating the numbers to ones with fewer bits. In an extreme
case, that can be an unsigned short integer with just 8 bit. This is also required
to run such a model on a specialized Tensor Processing Unit (TPU). Especially
edge-TPUs like the Google Coral require models quantized to 8 bit. According
to [70], the quantization’s effect on the detection accuracy can be kept low,
especially if it is considered during the training.
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3.2.9 Supervised and Unsupervised Learning

One can distinguish two ways to train algorithms: supervised and unsupervised
ones. Unsupervised algorithms do not need the support of humans as they
discover (hidden) patterns in data by themself. They are used, for example,
to cluster similar objects or reduce the number of dimensions. Most of the
algorithms discussed in this work perform supervised learning. Here, a human
offers a labeled training dataset so the algorithms can evaluate how well it
matches the expected labels. A method in between both is semi-supervised
learning. Here, a small amount of labeled data is combined with a large amount
of unlabeled data to train a model. This method works well if the labeled dataset
is highly relevant for the classes in all required situations. We can not guarantee
such kind of a labeled dataset and, therefore, focus on supervised learning.

3.2.10 Active Learning

Active learning is a feedback method that is, in some cases, performed during
the training. The model can ask an oracle (teacher), which can be a user or
another model, to label new data. This can be used for training or for the
evaluation of the current model. Active learning is commonly used if the input
data is hard to label or a large amount of data is available. We use a kind of
active learning in our work, as we combine the detection of the model with the
evaluation of humans from our crowdsourcing app Wolf-or-Not .

3.2.11 Hyperparameters in Machine Learning

In contrast to the weights, which are changed during the training, the Hyperpa-
rameters control the training or the learning process. Those are, for example,
the following:

• The Number of Epochs determines how often the training data is shown
to the network during the training phase.

• The Batch Size defines how many samples are fed into the network be-
tween two parameter updates and validation steps.

• The Learning Rate determines how fast and how exactly the network
might converge.

• When using transfer-learning, i.e., partly retraining an existing model, the
Number of Trainable Layers is also a hyperparameter.

• The Activtion Function can also be selected to be different to the com-
monly used ReLU function.

3.2.12 Backpropagation

Training a neural network is performed to match the output to the ground truth
of a given training dataset. For that, the internal weights are varied until the
(squared) error between the output of the neural network and the expected
output is minimal. The number of weights can easily be several thousand to
millions. It is obvious that randomly varying those weights can take very long.
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For the backpropagation, the derivative of the error is calculated, fed back, and
multiplied by -1 to the corresponding weight. This is done from the last layer
and then repeated for each layer till the first trained layer: The derivative of
the error propagates back through the network and, thus, reduces the error.

3.2.13 Deep Neural Network (DNN)

A Deep Neural Network (DNN), also known as deep learning, refers to ma-
chine learning algorithms having multiple layers of artificial neural networks.
The input is abstracted for each layer, resulting in more features and a deeper
understanding but also increasing complexity and, thus, required resources for
the execution. The number of (hidden) layers determines if a neural network is
deep. The exact value is not fixed, but networks with two or more hidden layers
are usually called deep.

3.2.14 Convolutional Neural Network (CNN)

A convolution is a mathematical operation describing how the shape of two
functions affects each other. It can be interpreted as a filtering. A Convolu-
tional Neural Network (CNN) is a neural network with at least one convolutional
layer, usually combined with a following pooling layer. The convolution with a
small, usually 3 × 3 matrix – the so-called filter, feature detector, or kernel –
helps to detect features like shapes in an image. For that, the filter is succes-
sively applied to a region of the input till it covers the complete area: it sweeps
over the entire input. The output is the feature map or activation map. After-
ward, a ReLU function is applied, and a pooling layer reduces the complexity by
downsampling using averaging or taking the maximum (c.f. Section 3.2.6). This
method reduces the complexity of the input by detecting shapes. Usually, sev-
eral convolutional blocks, each containing a convolutional and a pooling layer,
are combined. After the last block, a fully connected layer maps the features
extracted by the previous convolutional blocks to the expected output classes.
It creates an output probability usually between 0 and 1.

3.2.15 Transformer

Transformer networks [71] are comparatively new and used to transfer informa-
tion. One widely used application is the automatic translation. For that, the
transformer network is trained with texts in different languages. It finds the
correlations and is able to transform the information from one language into
another. Transformer networks are also used to summarize text.

3.2.16 Region-Based Convolutional Neural Network

Region-Based Convolutional Neural Networks (R-CNNs) are used in object de-
tection. The input image is converted into several boxes. A classification is
performed on those, resulting in a probability of the object in the box belonging
to a specific class. The challenge is the smart and efficient creation of the boxes,
and varies between the different algorithms.
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3.2.17 Support Vector Machine (SVM)

Support Vector Machines (SVMs) is a mathematical method for pattern recog-
nition. The objective is to split a set of objects by dividing them using a
hyperplane. This hyperplane is placed such that a maximum area between the
objects of two classes is kept free.

3.2.18 Feature Pyramid Network (FPN)

Feature pyramids contain feature maps in different resolutions [72]. Such a
pyramid helps to detect objects in various scales and performs better for small
objects at higher computational power and memory costs.

3.2.19 Data Augmentation

A good training dataset with sufficient input images is essential to train a good-
performing model. Data augmentation can increase the number of training im-
ages by flipping and tilting the images, adapting the brightness, cutting subim-
ages, etc., leading to an extended number of images for the training.

3.2.20 Transfer Learning

Thoroughly training a model can – depending on the structure and complexity
– take a lot of resources regarding time, computing power, and energy. For
several years, it has been common practice to use transfer learning [73]. One
uses an existing model which was completely trained on a set of classes. If those
classes are later adapted or used in a different domain, it is sufficient to only
re-train part of the model. The lower layers detect the shapes and fundamental
properties. They stay unchanged and are used as a so-called feature extractor.
The head of the model maps those features to the classes and is retrained. This
process of partly retraining the model is called transfer learning and significantly
speeds up development.

3.2.21 Domain Adaptation

Training an object detection algorithm can lead to overfitting on the static
background, especially when using a stationary camera position in combination
with only a few classes [74]. Such a model tends to detect parts of the changing
background as the majority class. Applying this model to another domain, i.e.,
images from another camera or environment, significantly reduces the perfor-
mance. Domain adaptation is a type of transfer learning that deals with the
transferability of a predictive model from a source domain to a different yet
related target domain while still trying to solve the same task.

3.2.22 Object Tracking

Multi-Object Tracking (MOT) is an additional task in the field of object detec-
tion. The objective is to detect a particular object, i.e., a wolf, and track the
movement [75]. The combination of tracking and detection can increase trust in
the detection by analyzing whether the movement makes sense over time. We
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(a) Even though this picture looks highly
realistic on the first view, it has some in-
consistencies: The number and positions
of the legs and the heads do not match
reality.

(b) Also, in this image, the faces and the
legs show unnatural positions.

Figure 3.6: Two packs of wolves created using Stable Diffusion with the sentence
“A photograph of some wolves. The wolves stand in a field. Some are partly
hidden by bushes. The image should be highly realistic and detailed.”

currently evaluate this object tracking and time series analysis on camera trap
images as a master project and do not further discuss it in this work.

3.2.23 Artificial Image Creation

Several technologies like Stable Diffusion or Deepfake exist to create images
using neural networks. They can create photorealistic images and videos as
shown, for example, in Figure 3.6. Here, we used Stable Diffusion to generate
several photos of wolves. The results look promising at first view but show
inconsistencies when looking more carefully at the photo. Problems with AI-
generated images mainly occur in the details like the number of fingers, legs,
or the details of the face. Those frameworks aim to create good, photorealistic
images, contradicting our work with low-quality camera trap images.

3.3 Computer Vision Frameworks

Several frameworks exist in the area of computer vision. They offer ready-to-
use models, code blocks to create new architectures, support to train, run, and
evaluate the models, and usually a lot of documentation and tutorials. As the
focus of this work is not to create a new architecture but to use the existing
ones, we give a brief overview of the currently used frameworks. We focus on
the frameworks used for classification and object detection and – if applicable
– with a focus on wildlife images.
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3.3.1 TensorFlow

One of the most well-known frameworks is TensorFlow [76]. It is developed by
Google and available for many devices, including embedded ones or even as a
Javascript implementation. With the Model Garden, it offers various models
adaptable to multiple machine learning tasks. On the webpage5, a lot of docu-
mentation and tutorials are available. TensorFlow’s primary focus is developing
and deploying new models on different devices.

We tested the MobileNetV2 architecture[58] on our wolf image dataset. The
MobileNetV2 model was initially trained on the ImageNet dataset, a popular
training dataset containing 1000 classes. It includes, for example, the class with
the id 269: timber wolf, grey wolf, Canis lupus. In theory, this classifier should
be capable of detecting wolves.

We first evaluated this model on a wolf dataset we downloaded from Flickr.
It contains 289 high-quality images tagged with the keyword wolf. The resulting
detections with the highest probabilities were timber wolf (203), coyote (54), and
red wolf (17). Afterward, we ran the same model on our dataset with 315 camera
trap images. Here, the detections with the highest probabilities were coyote (31),
African hunting dog (25), and tabby (24). Only three images were correctly
classified as wolf. One option to avoid this problem is to perform transfer
learning. We trained the head of the pre-trained MobileNetV2 on our first
wolf dataset containing 1883 images of the classes wolves, bears, and squirrels.
The transfer learning resulted in poor results: The accuracy during training
and evaluation was too low to be used. The reason for that was our highly
imbalanced dataset, which can lead to such results [77]. Several options, like
data augmentation, resampling, or creating a balanced dataset, can be used to
cope with this problem. This is one of the motivations for this work, as the pre-
and post-steps are obviously of high importance.

3.3.2 PyTorch

PyTorch [78] is another well-known machine-learning framework developed by
META AI (Facebook). It is widely used in research and focuses more on a clean
structure and well-understandable architecture, training, and evaluation of the
models. Similar to TensorFlow, it offers many models and pre-trained weights.

We performed the same evaluation of PyTorch as we did for TensorFlow
and evaluated the MobileNetv2 pre-trained on the ImageNet dataset. Running
the unchanged model on the Flickr dataset results in the following detections:
timber wolf (208) coyote (62), kit fox (6). Running the model on our wolf dataset
returns grey whale (64), velvet (24), and snow leopard (19) as the main classes.
Only ten were detected correctly as wolves. For PyTorch, we also performed
transfer learning. In contrast to TensorFlow, the results on our dataset were
good: The model detected all wolves correctly. For the Flickr dataset, only
19 wolves were detected correctly. Here, overfitting occurred: The model was
trained on a dataset that was too small and similar. This is common for camera
trap images. Also, the static camera position of our camera trap can lead
to this kind of problem. One solution is here again: a good training dataset
as will be offered with our ShadowWolf . The different results in the transfer
learning compared to the TensorFlow case were caused by slightly different

5https://www.tensorflow.org/

https://www.tensorflow.org/
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Figure 3.7: An example from MegaDetector: The tree was detected as an animal
with 50% certainty. The wolf in the lower left corner was not detected.

transfer learning approaches: The number of fixed and retrained layers differ
between TensorFlow and PyTorch.

3.3.3 Keras

Keras [79] was initially developed as an interface for TensorFlow. It is currently
extended to support other backends like PyTorch. The objective is to unify the
interfaces between different frameworks and simplify the daily work. Autokeras
[80] is based on Keras and tries to further simplify the generating and training
of new models in machine learning. At the time of writing, object detection
is not supported by AutoKeras but is mentioned as currently being developed.
Therefore, we did not further evaluate this framework.

3.3.4 MegaDetector

MegaDetector [21] focuses on detecting animals, people, and vehicles on camera
trap images. In contrast to the frameworks mentioned above, it only detects if
there is an animal but does not identify it on a species level. MegaDetector is
based on YOLO (earlier versions on TensorFlow). We ran MegaDetector on our
dataset and evaluated the detections manually: How well does it detect wolves?
An example image is shown in Figure 3.7. Here, the tree trunk was detected
with 50% certainty as a wolf. MegaDetector did not catch the wolf in the lower
left corner. The detections are generally good but show weaknesses for sitting,
lying, or distant wolves. Furthermore, the models used are pretty big (267M)
and require, even on our server, 3.3 seconds per image for the inference.

MegaDetector can be used in ShadowWolf to create the bounding boxes in
the segmentation phase. Due to the comparatively long inference run-time per
image and large model size, we used classic approaches for the background sub-
traction, which run significantly faster. They also result in more false detections,
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but the subsequent steps of ShadowWolf will filter those out.

3.3.5 YOLO

YOLO (You Only Look Once) [62] is an algorithm with a corresponding
toolchain simplifying object detection and based on PyTorch. It produces
good results with minimum effort for training and evaluation. Furthermore, it
can easily scale to different hardware with varying computing capabilities.
Whereas TensorFlow and PyTorch can be used to develop completely new
architectures and adapt existing ones, YOLO offers several pre-trained models
using their architecture. They also include image pre-processing and data
augmentation – steps that should be done manually for the other frameworks
and require additional knowledge.

YOLO offers various models with different image resolutions and sizes, re-
sulting in different precisions. Those resolutions are denoted by the letter af-
ter the YOLO version number. For example, YOLOv5n is the nano model,
YOLOv5s is the small one, and YOLOv5l is the large one. The size affects the
training time, the model size, and the execution time. The default models are
using images with 640 px. Models with a higher resolution of 1280 px are also
available and marked with a six at the end, i.e., YOLOv5n6, YOLOv5s6, and
YOLOv5l6. Details about the pre-trained models can be found online6.

We evaluated YOLO on our dataset and achieved good results. The models
being assessed resulted in significantly higher true positives with fewer false
positives than the ones from PyTorch and TensorFlow. In contrast to those,
YOLO has preprocessing, like scaling the images, adapting the model’s input
parameters, augmentation, etc. build-in. This reduces the time to optimize
the model. Furthermore, the different model sizes help to deploy the object
detection to different machine types. This benefits our project context, as one
idea is to deploy our trained object detection on embedded hardware. YOLO
only has some minor drawbacks in detecting small or distant objects. We counter
those with additional steps in our ShadowWolf as discussed in Chapter 8.

3.3.6 Summary

In this section, we evaluated several frameworks and architectures commonly
used in the field of object detection. TensorFlow is the most prominent one.
The tested MobileNetV2 model performs well but requires good training data
for the transfer learning. Similar holds for PyTorch: The general performance
is good, but a good training dataset is key to train a well-performing model.
This is one of our motivations for writing our ShadowWolf .

Keras unifies the interfaces for different frameworks and aims to make the
start with neural networks as easy as possible. It uses TensorFlow as one of the
possible backends.

MegaDetector focuses on camera trap images. It detects animals but does
not identify the species. It can be used for the preprocessing in our work but
not to detect wolves.

YOLO is a complete ecosystem for machine learning. It performs well and
offers different architectures to scale to various applications and devices.

6https://github.com/ultralytics/yolov5#pretrained-checkpoints,
accessed: 2023-10-11

https://github.com/ultralytics/yolov5#pretrained-checkpoints
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Therefore, we select YOLO and further discuss the evaluation and imple-
mentation in Chapter 6.

3.4 Computer Vision Tools

Besides the frameworks mentioned before performing the object detection and
classification, several tools are required or recommended to simplify the process
of preparing the training data or exporting the results for a specific platform.
Tools like cvat [81], LabelImg [82] or Timeworx7 help to annotate images. They
support humans in labeling or to delegate the work to others. Some tools can
also use models to detect and annotate objects, reducing the workload.

Depending on the final device and architecture the model should run on,
some platform-specific adaptation might be required. The OpenVINO toolkit8

by Intel takes a model from a variety of frameworks like PyTorch or Tensorflow,
converts and optimizes the model, and allows the deployment on different de-
vices. Those can be optimized embedded systems such as the TPU used by the
Google Coral.

Handling the images or videos in the pre- or postprocessing of the detection
is also an essential part. For that, several toolkits are used to cut parts of the
image, import and export the results, draw boxes to visualize the outcomes, etc.
OpenCV 9 is a general computer vision library mainly offering real-time process-
ing and some machine learning functionality. We use OpenCV to cut and scale
the images, draw boxes around our detections, and add text for debugging.
Furthermore, it also offers a Saliency API, which we use for background sub-
traction. Pillow10 is another Python library to process images. In contrast to
OpenCV, it has extended support for reading image metadata. Therefore, we
use it in our work to extract the Exchangeable Image File Format (EXIF) and
IPTC Information Interchange Model (IPTC) information from the images.

The main task of the detection and classification is performed using the
state-of-the-art framework discussed and evaluated in Chapter 6.

3.5 Common Metrics in Machine Vision

This work aims to detect wolves in various environments. The objective is
to detect as many wolves as possible. Furthermore, all detections should be
correct, i.e., every detected wolf should be a wolf. For that, we compare the
detection from the model with manual labels, called ground truth. Both are
boxes with varying sizes and a class identifying what is assumed to be in this
box. Ideally, those boxes should match by 100%: All wolves were detected and
marked correctly, and the model did not miss one. This chapter introduces the
metrics we use in this work.

7https://timeworx.io/
8https://openvino.ai
9https://opencv.org/

10https://python-pillow.org/

https://timeworx.io/
https://openvino.ai
https://opencv.org/
https://python-pillow.org/
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Figure 3.8: The IoU (J(A,B)) is defined as the size of the intersections divided
by the size of the union of two sets or areas.

3.5.1 Intersection over Union

Comparing the boxes of the ground truth and the detection is done using the
Intersection over Union (IoU), also known as the Jaccard index as described
by Equation (3.4) and visualized in Figure 3.8. The output lies between 0 (no
overlap) and 1 (total overlap). A decision value of α = 0.5 is commonly used.
If J(A,B) ≥ α, the detection is considered correct, also called a true positive.
In our case, we compare the ground truth from the manual created labels with
the detections.

J(A,B) =
|A ∩B|

|A ∪B|
(3.4)

3.5.2 Possible Detection Outcomes

Using the IoU from the previous section, one can decide if a box from the detec-
tion matches a box from the ground truth. Here, in general, we can distinguish
four cases. In the case of a True Positive (abbreviated as TP), an element was
detected as the corresponding class and verified, i.e., the detection was correct.
This can be expressed as J(A,B) ≥ α. The second case is the False Positive
(FP). Here, the algorithm detected an instance that is not confirmed by the
ground truth, i.e., J(A,B) < α. A False Negative (FN) occurs if an instance
was not detected, i.e., it is in the ground truth but not in the detection. A True
Negative (TN) is a special case that is not applicable in an object detection
task as not every part of the image belongs to a class. Therefore, we do not
have true negative detections.

3.5.3 Precision and Recall

Two commonly used metrics in detection tasks are precision and recall. Both
measure the relevance of the detections.

The Precision reflects how accurate the prediction is, i.e., the percentage of
correct detections. It is calculated as shown in Equation (3.5).

precision =
TP

TP + FP
(3.5)

The Recall (sometimes referred to as sensitivity) measures if the algorithm
found all the instances of a class. Equation (3.6) depicts the corresponding
calculation.
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recall =
TP

TP + FN
(3.6)

Both the, precision and the recall, can have values between 0 and 1, where
1 is the best. We require for our application a high precision, i.e., detect all
wolves correctly. At the same time, we also need a high recall as we do not want
to miss a wolf.

3.5.4 F1-score

The harmonic mean of Precision and Recall is the F1-Score. A perfect model
has an F1-Score of one, i.e., all instances are detected, and we do not have any
false positives. The F1-Score is calculated as shown in Equation (3.7). The
optimization objective is to get an F1 as close as possible to 1.

F1 = 2 ·
precision · recall
precision + recall

(3.7)

3.5.5 Other Metrics

The literature commonly uses average precision (AP) or mean average precision
(mAP). Here, the precision over multiple classes is averaged; for multi-class
object detection, the precision over all classes must be considered. As most of
our dataset contains only one class (wolf), we focus on the precision and recall
for this class and calculate the F1-score.
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Chapter 4

LoRa Technology

The communication between the components of this work, i.e., the camera sys-
tem and the deterrents, should be wireless. As we discussed in Chapter 2, LoRa
is the technology we use in this work. Figure 4.1 shows the proposed com-
munication architecture. The horizontal dashed line represents the fence. In
the upper half, the farm animals – in this case sheep – are located. A wolf is
strolling around and examining the fence in the lower half. In the center, the
camera system observes the environment. Additional cameras are indicated at
the boundaries. The fence is protected with four sound and two flash deterrents.
If the camera system detects the wolf, a message is sent out to activate the de-
terrents. The packet might be received or not depending on the distance and
wireless technology. This is indicated by the Packet Reception Ratio (PRR):
The deterrents in the white area receive all the packets. The further away the
deterrents are, the lower the PRR and the higher the probability that the packet
is lost. LoRa can be parametrized in a way that the white area, i.e., where the
PRR is close to one, fits our requirements, and the deterrents are activated with
a high probability. Furthermore, we can send the same packet several times to
increase the chance of successful reception. As a third option, we can also use
acknowledgments to confirm the successful reception and resend the packet in
case of an error.

This chapter introduces the main functions and parameters in Section 4.1
and also evaluates the performance in Section 4.2. Finally, in Section 4.3, we
summarize this chapter.

4.1 Overview of the LoRa Technology

LoRa (short for long range) is a proprietary communication technology by
Semtech1. It was developed for battery-powered, low-energy devices and uses
a patented Chirp Spread Spectrum (CSS) modulation. The LoRa alliance2 fo-
cuses on developing LoRaWAN, an extension of LoRa with a networking layer.
Some of the specifications and requirements of the LoRa alliance are also rele-
vant to the base LoRa. An evaluation of the technology and the communication
ranges are given in [83] and also evaluated by us in Section 4.2.

1https://www.semtech.com/lora/what-is-lora, accessed: 2023-12-10
2https://lora-alliance.org
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Figure 4.1: Schematic representation of the proposed communication architec-
ture in dependency of the PRR. The top half contains the farm animals. The
dashed, horizontal line marks the fence. One camera is located in the center,
deterrents, and additional cameras are located along the fence.
The camera activates the deterrents wirelessly. The white area reflects the PRR
of 100 %: all sent activation messages are received. This changes over distance
and also depends on the environment. The darker the area is, the lower the
chance of a successful activation. The required communication distance de-
pends on the application and can be varied by adapting the LoRa parameters.
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LoRa can operate in several frequency bands, whereas the most common ones
are 868MHz and 433MHz for Europe, 915MHz for North America and 433MHz
for Asia [84, 85]. The communication range varies and highly depends on the
environment, devices, and modulation parameters. For outside communication,
it varies between 1 km to 5 km in urban regions and 5 km to 15 km in rural areas.
In the case of a direct line of sight, the range can be even higher.

Such a long communication range affects all nodes in the range, and the
communication should be limited to a minimum. For that, the local authori-
ties, like European Telecommunications Standards Institute (ETSI) for Europe,
require duty-cycling. For the 868MHz as mainly used in Europe, this is ≤ 1%
[86], i.e., a node is allowed to transmit at maximum 36 s per hour. Consequently,
if transmitting a packet takes 100ms, the node should not transmit anything
the following 10 s. The time it takes to transmit a packet over the air is called
Time on Air (ToA) and should be as short as possible. Several LoRa parameters
influence the ToA and can be set up on the transceiver.

The packet size is one option to affect the ToA. The larger the packet is,
the longer it takes to transmit it. For LoRa, the maximum size of a packet is
256B [87] but depends on the other modulation parameters. In the worst case,
only 11B can be transmitted.

The modulation itself is characterized by three parameters: The spreading
factor, the code rate, and the bandwidth. The spreading factor (SF) can be
set in the range of 7 to 12 and defines the number of symbols used to transmit
the data. Practically speaking, a low spreading factor of 7 results in a shorter
ToA and a reduced communication range, whereas a longer spreading factor in-
creases the range but also the ToA. The LoRa spreading factors are orthogonal,
i.e., transmissions on the same channel with different spreading factors do not
interfere.

The code rate (CR) influences the amount of error correction added to the
data and can be 4

5
, 4

6
, 4

7
or 4

8
. Usually, only the denominator is given as, for

example, 5 in the case of 4

5
, meaning that 4 bits of data are transmitted using

5 bits. As for the spreading factor, the code rate highly influences the ToA.
The third parameter is the bandwidth (BW) and can be 125 kHz, 250 kHz,

and 500 kHz. The higher the bandwidth, the shorter the ToA, but also leads to
a lower receiver sensitivity and, thus, a reduced communication range.

Besides the three modulation parameters, two options affecting the payload
size itself are available. One is the header with a payload length and a Cyclic
Redundancy Check (CRC) checksum. The second is an CRC over the complete
data. Both are optional.

Table 4.1 shows the effect of the different LoRa modulation parameters. We
calculated the time it takes to transmit a packet with a given length of 48B, the
amount of data we later use in this work. Considering the duty cycle of ≤ 1%,
we also calculated how long we must wait to transmit the next packet. We
deactivate the CRC and use the explicit header as, according to our experience,
this offers the best performance and interoperability. One can see the effect of
the parameters: high bandwidth, low code rate, and low spreading factor lead to
a fast transmission and allow sending more packets at the drawback of a lower
range. In contrast, low bandwidth, high code rate, and a high spreading factor
reduce the number of packets that can be sent but increase the range.
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SF BW CR TX Duration Next packet after
7 125 kHz 4/5 87.30ms 9 s
7 125 kHz 4/8 127.23ms 13 s
7 250 kHz 4/5 43.65ms 4 s
7 250 kHz 4/8 63.62ms 6 s
12 125 kHz 4/5 2138.11ms 214 s
12 125 kHz 4/8 3022.85ms 302 s
12 250 kHz 4/5 1069.06ms 107 s
12 250 kHz 4/8 1511.42ms 151 s

Table 4.1: The effect of the different LoRa parameters for a payload of 48B,
explicit header and no CRC for a spreading factor of 7 and 12, a bandwidth of
125 kHz and 250 kHz and the code rates of 4

5
and 4

8
. The grey line marks the

parameters we use in this work.
SF = Spreading Factor, BW = Bandwidth, CR = Code Rate

The datasheet for the SX1276/77/78/79 LoRa transceivers from Semtech3

describes the calculations used in Table 4.1. An online calculation tool is also
available4.

In the next section, we will evaluate LoRa’s real-world communication range.

4.2 Evaluation of LoRa

In our department, we use LoRa for a variety of different projects, both indoor
and outdoor. A colleague used LoRa for vehicular communication and evaluated
the effect of the speed in [88]. Students use LoRa to build an in-house commu-
nication and location system. Other colleagues made a LoRa-based messaging
system in [52] and achieved a communication distance of several kilometers. In
[89], we used LoRa in the rainforest to transmit mosquito vector counts just to
give some examples.

We usually start with the standard LoRa parameters and set the bandwidth
to 125 kHz, the spreading factor to 7, and the code rate to 4

5
. Only if the range

is not sufficient, we adapt those. With this, we ensure we do not occupy the
channel more than necessary.

The landscapes where wolves were sighted vary. Sometimes, the system has
to work in the flat north of Germany, sometimes in the hilly south, sometimes
covered by a dense forest. We did not evaluate LoRa for all those environments
but took a comparable example from the Suan Phueng, Thailand Rainforest.
Due to the denser vegetation compared to Germany, this test is a worst-case
evaluation. Here, we used two nodes: A fixed receiver and a moving transmit-
ter. Every time a packet was sent, the current position was stored. For the
hardware, we used lopy4 by pycom. Those devices consist of an ESP32 micro-
controller combined with a Semtech SX127x transceiver. We used the default
LoRa parameters as mentioned above an marked in Table 4.1. The software

3https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/

6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE, accessed: 2023-12-10
4https://loratools.nl/#/airtime, accessed: 2023-12-10

https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://loratools.nl/#/airtime
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Figure 4.2: The PRR as measured in Thailand. All packets are received up to
300m, and packets were lost after 500m. In total, 74 packets were evaluated.

and the measurement results can be found in our GitHub repository5.
From this information, we can plot the PRR over the distance as shown in

Figure 4.2. In total, we evaluated 74 packets. Up to a distance of 300m, all
packets were received, leading to a PRR of 1. Increasing the distance to more
than 500m results in a complete loss of all packets. Those results can be related
to the circles in Figure 4.1: The white circle corresponds to the distance up to
300m: In this range, the deterrents will most likely be activated. The actual
range will be higher in a free field with a direct line of sight. Also, the antennas
used and their orientation can influence the communication range: Well-aligned
external antennas usually perform better than internal ones. As a drawback,
they break easily if not handled carefully.

The expected range of LoRa is significantly higher than the expected ones
for the object detection and the deterrents used in this work. Therefore, we find
LoRa a valid choice for the communication.

4.3 Summary

In this chapter, we introduced our wireless architecture based on LoRa. We
discussed the most important parameters and their effect on the transmission
time. We also discussed the maximum number of packets we can send in a given
time. We evaluated the communication range regarding the packet losses: Up
to 300m, no losses occur. This range is higher than the ones of the other parts
of the system. Therefore, we find LoRa a valid choice. We will further evaluate
LoRa for different environments during the test phase of the complete system
at the end of the scheduled project time of mAInZaun.

5https://github.com/ComNets-Bremen/LoPy-Distance

https://github.com/ComNets-Bremen/LoPy-Distance
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Chapter 5

Data Collection in the Wild

A good dataset is essential to train a machine learning algorithm. Good, in our
case, means also realistic. Several datasets exist showing glossy, high-quality
images of various animals. We focus on real images that are automatically
captured in the wild, including the ones that are usually removed because of
their low quality. We did not find a suiable dataset meeting our requirements
and collected our own, as discussed in Chapter 2.

This chapter introduces our hardware setup in Section 5.1. The challenges
we faced while collecting our datasets are discussed in Section 5.2. Section 5.3
describes the datasets we use in this work. Section 5.4 summarizes this chapter.

5.1 Our Camera Setup

This section describes the setup we used to collect our wolf image dataset. It
is related to the hardware in Chapter 9 where we discuss the considerations for
deploying the entire system. The objective of the setup in this section is to
collect as many training images as quickly as possible. The detailed list of parts
we used, as well as some pictures, can be found in Appendix A. Table 5.1 lists
an excerpt with the main expenses.

As a camera, we used a model from Axis: The M2025-LE. It offers good
low-light capabilities, has a built-in infrared light to record images during the
night, and is certified with IP66, i.e., it comes with good weather protection.
The sensor has a full-HD resolution (1920 × 1080 pixels), and the lens has a
horizontal field of view of 115°. Furthermore, it supports capturing images in
High Dynamic Range (HDR)-mode, which is highly interesting to us: If the sun
points directly to the camera (contre-jour), the dark areas in the shadow become
invisible using a standard camera, as they usually do not support such high
differences in brightness. Cameras with HDR-support perform tone-mapping to
adapt to this increased dynamic range: One can see more details in this light
condition as it will be shown and discussed in Figure 5.1 on page 54.

Also, cheaper cameras are available. The different prices depend mainly
on the low light capabilities, the quality of the lenses, and the sensor’s resolu-
tion. Systems from several tenths of euros up to several thousands of euros are
available on the market, offering many options for the user. One has to find a
trade-off: For example, a high-resolution system might work better, but it also

49
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requires more storage and computing power to evaluate the images and run the
inference. This is, especially for in-field computing, a critical point.

In our case, the Axis M2025-LE met all the requirements regarding price,
field of view, resolution, weather protection, low-light capabilities (including
infrared-spots), and further options like HDR-mode. The price is approximately
425e as of December 2023.

The camera has built-in motion detection. We used that to capture our
images: Two images per second are recorded if motion is detected. The recording
starts one second before the motion is detected and stops five seconds after the
movement ends. Furthermore, we take one picture every full hour to have a
regular image as a kind of heartbeat. For motion detection, we ignored areas
with treetops using the camera’s built-in masking capabilities and focused only
on the spots where animals could pass by (a wolf usually does not fly). Still,
bushes and other moving things were in the area, resulting in images with no
animals.

The collected images were stored on a RaspberryPi version 4 with 4GB of
RAM and an SD card with 16GB. Every night, the images from the previous
day were moved to an external, 1TB SSD, preventing the SD card from running
full. This setup is used to collect images for later training. Keeping the images
is not required for a real deployment while running the detection. Everything
is packed in weather-protected cases. The detailed list of parts is available in
Appendix A.

Every hour, 10 images were uploaded via a cellular connection to our server
to ensure the system was running and remotely monitor the image quality. We
did not optimize it regarding energy as we always had the main power available.

The following section will discuss the considerations and challenges we faced
during the image collection.

5.2 Challenges in Outdoor Image Collection

Images automatically captured in outdoor environments significantly differ from
those collected in indoor or lab environments. This section describes the various
challenges and pitfalls we encountered during our collections. Those were also
published in our previous work [90, 91].

5.2.1 Casing and Protection

Deploying a high-tech system in the wild yields several challenges. The obvious
ones are in the hardware itself: The devices have to survive in harsh outdoor
environments, i.e., dust, rain, snow, hail, etc. Also, people might drop it, stand
on it, turn it over, etc. For that, a proper casing is required. The protection
standard regarding the ingress in a casing is defined using the so-called IP Codes,
which consist of two numbers: The first stands for the protection against solid
particles, the second for the water protection [92, 93]. For our system, no dust
should enter, i.e., the first digit is 6. Regarding water for a final product, we
aim to achieve 7 or 8 so the devices can be submerged for a short period of
time. This is quite challenging, and for our currently used setup, we reach 5
or 6 (waterjets from all directions). The resulting protection is called IP 65 or
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Component Price Comment
Axis M2025-LE 425e Camera
Raspberry Pi 4 120e Bundle with case, SD-card etc.
SSD 1 TB 70e For image storage
Huawei E8372 LTE 75e WiFi Router (LTE)
Outdoor Case 45e For the complete system
PoE-injector 35e Power supply for the camera
USB power supply 35e For router and RaspberryPi
Incidentals 50e Cables, breakthrough, connectors, plugs,

glue, etc.
Total: 855e

Table 5.1: The costs of the main components of our camera system used for the
data collection. We took care that the system can operate outdoors.

IP 66. It is essential to ensure high IP levels for all involved parts of the system,
especially plugs, switches, cable glands, lights, etc.

Another commonly neglected challenge is the humidity and temperature dif-
ferences, which continuously change in outdoor environments. Hot air contains
more water than cold air. Due to the changes between day and night, the hu-
midity from the air condenses inside the case, resulting in a notable amount of
water, even in entirely tight cases. Pressurization valves (breathable valves) can
act as a countermeasure. Those valves let the air, but not the humidity, pass.
This technology is also commonly used for clothing and shoes.

The complete system must be protected against shock damage during han-
dling. Here, several boxes are available on the market, and selecting one is not
a real challenge. According to our experience, equipment from the automotive
sector is a good starting point for the casing: They are protected against harsh
conditions on the road, are not very expensive, and are available. The case
should also be rated for outside usage, i.e., in the direct sun. Ultraviolet light
causes standard plastic to age faster, and the case breaks earlier. Depending on
the environment, theft protection and protection against vandalism should also
be considered.

5.2.2 Costs of the System

Regarding the costs, mAInZaun has larger deployments in mind. Therefore, we
focus on off-the-shelf commodity components to keep the costs comparatively
low. Table 5.1 gives an overview of the costs of the main components of our
camera system. The most expensive part is the camera itself. We selected this
model mainly because of its good low light and night vision capabilities and
IP66 protection against heavy rain. The remaining components are consumer
parts. The total cost of one box sums up to 855e.

Those costs can be reduced for a real product, and the possible options are
discussed in Chapter 9.
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5.2.3 The Power Supply

Operating a camera system, especially with object detection, requires energy.
For the data collection as discussed in this chapter, we always had mains power
available. The options for a completely autonomous, self-contained system in
a remote environment without permanent access to the power grid are briefly
discussed in this section.

We neglect the energy required by the deterrents for now and only focus
on the system’s detection parts. An overview of selected parts and their power
consumption is given in Table 5.2. We focus on two types of systems: One
type uses an off-the-shelf surveillance camera from Axis connected via Ethernet
to a computing device, like the RaspberryPi, NVIDIA Jetson Nano, or Google
Coral. This solution has the advantage that we can use all the flexibility of the
hardware and easily extend the system. Alternative solutions are, for example,
the Luxonis cameras, which can run AI models directly on the camera itself.
Those are very powerful but restricted regarding additional functionality like
additional image processing. For reference, we also added a WiFi-LTE router
from Huawei for Internet access.

Component Functionality Power (W)
RaspberryPi 4 Processing 12.5W to 15W
NVIDIA Jetson Nano Processing 10W to 20W
CORAL Dev Board Processing 10W to 15W
AXIS M2026 LE Camera 5.1W to 7.9W
Luxonis OAK-D Pro Camera, Processing 10W
Huawei E8372 Internet Router 5W

Table 5.2: Comparison of different components and their energy requirements
according to their datasheets.

As an example, we consider a USB power bank with an approximate capacity
of 10.000mAh at 5V, i.e., 50Wh, and ignore all the losses and side effects,
additional converters, etc. We can estimate the resulting lifetime: Assuming all
devices operate at 5V, a 10W device draws a current of 2A, and the power bank
will be empty after approximately 5 h. If we consider the surveillance camera
with a RaspberryPi and an internet router, we draw 30W or 6A. The power
bank will be empty after roughly 100min. For this setup, the voltages have to
be converted, and losses occur, yielding a significantly lower real lifetime.

Also, an alternative battery like a lithium or a car battery can be used.
Those have a higher capacity, for example (55Ah) at a higher voltage (12.8V,
resulting in 704Wh) and higher weight (10 kg) for the car battery. Assuming a
perfect voltage regulator again, we could get 140.000mAhat 5V leading to an
estimated lifetime of 24 h. With the 10W load, the battery will last 70 h.

Using a solar panel might be an option to extend the lifetime. As the system
also has to work during nighttime, cloudy days, and wintertime with only a little
sunlight, the solar panel should offer at least 4-6 times the power that is required
for the system. When it is placed in the field, it has to be aligned properly,
cleaned regularly, should not be shadowed by trees and bushes, etc. Also, the
size of the required panels and the required stand are notable challenges. Right
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now, they might only be considered for quasi-stationary use cases but not for
mobile ones.

The power supply can be split into two main challenges: First, carefully
selecting and fine-tuning components regarding energy consumption is vital for
a long lifetime in remote environments. Solutions like wakeup mechanisms or
using different sensors can significantly increase the system’s lifetime. Second:
The power supply design is crucial if real-time data processing or even collection
is planned.

For the final product, custom-made hardware might be an option. The
options for that are discussed in Chapter 9.

5.2.4 Transport: Weight and Size

The third challenge is the deployment itself. Farmers, who are usually non-
technical users, should be able to deploy the systems into sometimes very remote
areas. Therefore, everything should be as lightweight as possible and can be set
up quickly. Complex alignments of the devices or software setup procedures
should be avoided. Ideally, the overall system should be able to perform some
fundamental self-tests and notify the user in case of any issues.

In some cases, like for the levees in Germany, no heavy machines can be
used. Therefore, the weight (and thus the battery size) is limited as the device
might be carried by hand. Also, regular maintenance, like changing batteries,
refilling materials, or just cleaning lenses or solar panels, should be minimal.

5.2.5 Notifications and Communication

The status of the system should be communicated regularly: Is a wolf detected?
Is a battery running low? Did a device fail? This kind of communication
requires a cellular or, more generally, internet connection. The communication
in the field, i.e., to activate the deterrents, can be different and is discussed in
Section 9.4.

The typical technologies in this area depend on the environment, such as
WiFi, cellular networks (4G, 5G), satellite (Starlink, Iridium, etc.), SigFox,
LoRaWAN, etc.

Here, the bandwidth and the energy requirements highly vary between less
than a Watt (LoRaWAN) up to 50W to 75W (150W in high-performance
mode) for Starlink. The latter power requirements can not be met over a longer
time using batteries. We assume that a simple cellular connection, optionally
with an external antenna, might usually work to transmit status messages.

5.2.6 Environmental Challenges

Besides the technical challenges, as discussed in the previous sections, several
environmental occurred during our data collection.

5.2.6.1 Light Conditions and Shadows

Light is essential to capture images. This can be the normal sunlight or artificial
light as offered, for example, by the built-in infrared spots of our camera. Not
only the light but also the direction is important. Figure 5.1 shows an image
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Figure 5.1: An image captured in contre-jour: The sun pointing directly to
the camera hinders detection. Furthermore, the trees result in significant drop
shadows.

in contre-jour: The sun shines directly to the camera’s lens. Due to the HDR
mode, one can still see some details. For cheaper cameras, this picture would
show fewer details. In this light situation, the resting wolf marked by the red
circle is hard to detect and can barely be distinguished from bushes or tree
trunks.

The vegetation, clouds, and sunny days also create shadows, as can be seen in
Figure 5.1. During windy days, single clouds let the tree shadows seem to move
quickly. The motion detection will act accordingly and record many images and,
thus, possibly triggering false positive detections.

Shadows can also occur during the night: Figure 5.2 shows such an example:
The wolf shows a large shadow caused by the moon.

Capturing images requires a certain amount of light, either daylight or arti-
ficial light as the infrared light provided by our camera. The minimum amount
of light necessary to capture images is often given in the unit lux (lx). For our
camera (Axis M2025-LE), the minimum light in color mode is 0.2 lx, and for
greyscale 0.04 lx.

Another parameter for the light is the exposure time of the camera. In our
case, this can be between 1

66500
and 2 s. If only little light is available, the

exposure time has to be high to get enough light for the CMOS sensor. This
results in blurry and unsharp images for moving objects, as shown in Figure 5.3.
Here, a wolf runs through the field of view of the camera. The three pictures
were taken within one second. Low exposure times in an environment with
insufficient light result in too dark images.

This kind of image is deleted in many datasets because of the low quality.
For our project, we especially want them to evaluate the performance of the
models. This is one of the reasons why we created a new dataset.
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Figure 5.2: A picture captured in night vision mode in the early morning. The
shadow of the wolf is larger than the wolf itself.

Figure 5.3: Three pictures taken within one second: A wolf runs through the
camera’s field of view.
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Figure 5.4: A spider in front of the lens. The infrared spot enlightens the insect,
blinding the sensor. This kind of image can barely be used.

5.2.6.2 Dirt and Pollution on the Lenses

Depending on the environment, the weather, and the camera’s orientation, dirt
can play a significant role. Fortunately, this issue did not significantly affect
our wolf dataset. We know from our other camera images captured outside that
not cleaning the lenses regularly can result in a large amount of at least partly
unusable images.

5.2.6.3 Insects

Insects can also significantly affect image capture. For example, Figure 5.4 shows
a spider building its web directly in front of the lens during nighttime. The
infrared light, which is located just a few millimeters from the lens, enlightened
the spider, resulting in unusable images. We tried several methods like odorants
or herbs to deter the spider, but nothing worked effectively or lasted longer.

Flying insects like mosquitos, moths, and bugs also reflect infrared light,
resulting in bright spots passing through the image. Those are usually short-
timed and do not significantly affect the overall detection.

5.2.6.4 Precipitation

Precipitations like rain, snow, fog, etc. can reduce the range of the optical camera
system significantly. Figure 5.5 shows the effect of rain. Heavy rain during the
night can make the images unusable. Figure 5.5a shows this effect. The infrared
light next to the lens supports the negative impact of the rain by blinding the
camera. During the daytime, this effect does not occur. Figure 5.5b shows a
usable image taken during rain in the daytime.
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(a) Heavy rain during the night. Due to
the infrared light, almost nothing can be
seen.

(b) Heavy rain during the day. It can be
seen more than at night, but the sight is
still reduced.

Figure 5.5: The effect of heavy rain during the daytime and the nighttime.

5.2.7 Lenses and Optical Challenges

Besides the environmental challenges discussed in the previous section, physics
also sets limitations regarding optical properties. The camera’s field of view
is critical for the detection. Our Axis M2025-LE has a horizontal resolution
of 1920 pixel for a field of view of 115◦. The vertical resolution is 1080 pixel
for a field of view of 64°. With three perfectly aligned cameras, one can almost
achieve a 360° view (3 ·115◦ = 345◦). Such a wide-angle lens has two drawbacks:
First, the resolution, especially for far away objects, is comparatively low, which
hinders good detections. Second, such a wide-angle lens results in distortion,
i.e., straight lines might look bent. This can be problematic for objects not
located in the center of the images: The objects look different depending on the
area they are located at, as shown in Figure 5.6. One can now use a different
lens with a smaller field of view. This helps to get high-resolution images from
distant objects but also increases the required number of cameras to cover a
particular area.

Especially for deployment in the field, one also has to keep in mind that
an increased number of images and a high resolution lead to higher processing
power requirements. This directly increases the costs and also the required
energy.

5.2.8 Camera Position

Images captured using camera traps are prone to overspecialisation in a specific
domain. This happens due to the relatively static background of camera trap
images, which mainly differ in the weather and lighting conditions. The low
background variance might lead the model to learn by leveraging the specific
backgrounds of specific camera traps. In the classification case, if the camera
traps have an unbalanced class distribution, the model might often predict the
majority class for a given background, meaning that it is not learning to classify
objects but backgrounds. That means that the model learns to predict “wolf ”
for the images from a specific camera position because most training images for
this camera are of class “wolf ”. The model detects that a particular camera
position took the images. Similarly, in the detection case, this might lead the
model to detect non-background objects as the majority class.

One has to be aware of this issue when working with static camera trap
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Figure 5.6: The effect of the distortion using a wide-angle camera: The red lines
connect two points in the image, which should be straight like the trees or the
metal pole at the right side of the photo. Due to the distortion, those look more
bent the more they are located at the side of the image.

Images
Park Timespan Number Size
Alternativer Bärenpark
Worbis

2021-09-13 – 2021-09-14 9536 13.5GB

Wildpark Lüneburger
Heide

2022-03-28 – 2022-03-30 27543 47.5GB

Wingster Waldzoo 2023-01-11 – 2023-02-02 63249 91.5GB

Table 5.3: Overview of the parks and the amount of collected images. The
complete information about our datasets is given in Appendix B.

images to train a new model. One can use different camera angles by changing
positions, cutting the collected images, or using post-processing technologies like
domain adaptation [74]. In our work, we address this issue by offering the option
to cut the training images to the area containing the object of interest. Further,
we can easily adapt to new camera positions using our automated approach.
Both help to mitigate the effect of static camera positions.

5.3 Our Datasets

In Section 5.1, we described our camera system’s hardware setup and configu-
ration. We use this system to collect our dataset. The details, like the number
of images, the time and location where we collected the images, and examples
are provided in Appendix B and summarized in Table 5.3.

We collected more than 100.000 images in three parks in northern Germany.
The first images were collected in September 2021 in Worbis. In the Alterna-
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Figure 5.7: The distribution of our image dataset over a day: The time most
images were captured varies from park to park. During the night, images are
only recorded if motion in the range of the built-in infrared spot is detected.
For the Wildpark, we collected 27538 images in two days. For the Waltzoo at
the Wingst, we collected 63212 images in 22 days.

tiver Bärenpark Worbis, three American timber wolves live together with several
brown bears. This was our first set of images. Approximately half a year later,
we collected the first images showing European Grey Wolves in the Wildpark
Lüneburger Heide. Here, we had the chance to monitor two wolves at the end
of March 2022. Our largest dataset originates from the Wingster Waldzoo. We
took more than 60.000 images of five Grey Wolves in January 2023.

The wolf breed mainly living in the wild in Germany is the European Grey
Wolf, as kept in the last two parks, namely Wingst and Lüneburger Heide.
Therefore, we focus on these datasets and neglect the one from the park in
Worbis showing the Timber Wolves. Anyhow, even the timber wolves might be
of interest to the community. Therefore, we plan to publish this data as well.

A few images were corrupted and removed. We collected 90750 images from
Grey Wolves, where 79638 (88%) were captured during the daytime and 11112
(12%) at night in infrared mode, as shown in Figure 5.2.

The number of taken images depends on two things: 1) the activity of the
wolves and 2) the range of the camera. The latter is highly affected by the
environmental conditions. During the night, the camera only detects motion if
it occurs in the area covered by the infrared spot. Furthermore, fog, rain, and
snow also affect the range. Figure 5.7 shows how many pictures were taken in
which timespan of the day for the individual parks.

The wildpark shows two peaks: one in the morning and one in the af-
ternoon/evening. Our largest dataset from Wingst shows activity during the
opening and working hours from 07:00 - 18:00.

For this work, we focus on our own collected dataset as we know the proper-
ties of the images and the used hardware best. We use it to create our reference
dataset described in the next section.
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5.3.1 The Annotated Reference Dataset

In Section 5.3, we described the source of our images. We focus on the ones
containing the European Grey Wolves, as one can find in the wild in Germany.
From those images, we create our reference dataset. It should contain images
from different angles and cover various light and weather conditions. Further-
more, the time series should be kept, i.e., we focus on a series of images.

For the dataset from the Wildpark, we took one time series per hour, ap-
proximately 30 minutes after the full hour (07:30, 08:30 etc.) between 06:30
and 20:30. We ensured the complete series of images were used. This results
in 390 images, all collected on the 29th of March 2022. We have data over
several days for the dataset from Wingst. To reflect also the changing weather
conditions, we created a representative day of images: Every time series is taken
from another day: The images for 06:30 were taken on 2023-01-14, the ones from
07:30 on 2023-01-23, from 08:30 on 2023-01-15 etc. In total, we got 750 images
between 06:30 and 21:30 from the Wingst.

This results in 1140 images captured in different environmental conditions.
952 of them contain at least one wolf. Those images were manually labeled with
bounding boxes for individual wolves with the tool LabelImg and used as our
reference dataset.

Additionally, we use the IPTC-IIM standard to store additional metadata
(i.e., keywords) in the image file. Many standard image processing tools and
graphics editors can read and write this data. In our case, we used the open
source software digiKam1 to set weather and light relevant keywords: rain,
snow, fog, sunny, twilight, night, overcast and contre-jour. Each image can have
several (and arbitrary) keywords. As we will analyze our detections regarding
the light conditions later, we use this predefined list of terms.

Furthermore, we use the number of colors of the images to determine if they
were captured during day or night: For our camera, the day images contain all
three color channels (RGB), the night images only one (i.e., the values for the
red, green and blue channel are identical). Table 5.4 lists the number of images
for each property and the corresponding source.

This reference dataset is our primary labeled one and was created to reflect as
many realistic scenarios as possible. It contains only the European Grey Wolves
in different situations. It also reflects various weather and light conditions.

5.3.2 Base Dataset

While collecting and analyzing the first images, we created several smaller
datasets. One of these is the base dataset. It contains random images from
the first two parks (Worbis, Wildpark Lüneburger Heide) where we placed our
camera and, thus, contains not only the European Wolves but also brown bears
and American Timber Wolves. This dataset contains in total 1607 images and
is split into a train (65 %), test (15%) and validation (20 %) dataset. We manu-
ally created this dataset’s labels and used them to train our first wolf detection
model. We use this model as the base model for the performance evaluation of
Wolf-or-Not and to show how the model adapts to the different wolves.

1https://www.digikam.org/

https://www.digikam.org/
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Property Data Source Count
Day Image 806

Night Image 334
Overcast IPTC 389

Sunny IPTC 357
Night IPTC 334

Twilight IPTC 18
Rain IPTC 50

Contre-jour IPTC 0
Snow IPTC 0

Fog IPTC 0
Total 1140

Table 5.4: The number of images in our reference dataset with a given property
and data source. One image can have multiple IPTC keywords. Therefore,
those do not sum up to the total number of images.

5.3.3 Test Dataset

Another dataset is our test dataset. We created it to evaluate the performance
of Wolf-or-Not . It contains 1526 randomly selected, manually labeled images
from the five wolves living in the Wingster Waldzoo. We use this dataset to
evaluate the change of the detections while using Wolf-or-Not to create new
labels and models.

5.3.4 Automatically Labelled Datasets

This work aims to create automatically labeled datasets using voluntary users,
models, or a combination of both. We use iterative processes, creating a new
dataset with each run. Those automatically generated datasets will be discussed
and evaluated in the corresponding chapters.

5.4 Summary

A good, realistic dataset is important for this work. This chapter described our
setup: How did we collect our images? Further, we detailed all our challenges,
from financial to environmental to technical. Finally, we described the datasets
we used in this work.
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Chapter 6

Evaluation of YOLO

In Chapter 3, we introduced machine vision and the relevant frameworks. In
Section 3.3. YOLO (You Only Look Once) showed several advantages compared
to the other frameworks, including good detections, different models that allow
adaptation to the available hardware, and an active community. In this chapter,
we evaluate YOLO and give further details.

6.1 Evaluation Setup

We used several physical machines to evaluate the performance of YOLO and
compare it regarding the runtime. On all of them, we installed the same YOLO
version from the GitHub repository1. Due to the different Operating System
(OS) versions, the Python versions and some libraries differ. During the tests,
we were the only user on the machine to reduce the effect of other processes
on the results. We did not repeat the experiments due to the comparably
high runtime. We trained three high-resolution YOLO models with different
complexities, namely YOLOv5l6, YOLOv5s6, and YOLOv5n6. We used our
reference dataset from Section 5.3.1 with 1140 images for the inference.

Our GPU-server is the main machine. We used it for the training and
inference. The CPU is one 6-core Intel Xeon Bronze 3204. GPU processing is
performed using an NVIDIA RTX A5000. The complete system has 128GB of
RAM and an SSD for the storage. The OS is a Ubuntu 22.04.3 LTS with Python
3.9.12 and torch-1.13.0. For the GPU processing, we used version 520.61.05 of
the NVIDIA driver together with CUDA 11.8.

A normal CPU-server was used to evaluate the inference on a powerful
machine. It uses two Intel Xeon E5-2699 v3 with 2.3GHz resulting in total in
36 cores. The system has an SSD for data storage and 256GB of RAM. The
OS is Debian 10.13. We used Python 3.11.4 and torch-2.1.0.

We also tested the model on a standard PC with an Intel Core i7-5600U
with 4 cores. It has 12GB of RAM and an SSD. Die OS was a Debian Trixie
with Python 3.11.6 and pytorch-2.1.0.

The objective of the mAInZaun project is to run the models in the field.
Exemplarily, we selected a RaspberryPi to run the inference on such a device.

1https://github.com/ultralytics/yolov5/, YOLOv5 V7.0, master branch.
SHA1: 454dae1301abb3fbf4fd1f54d5dc706cc69f8e7e from the 7th December 2022
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Model Epochs Layers Params. Size Total per Epoch
v5l6 285 346 76,134,048 147 MB 8.2 h 1.7 min
v5s6 400 206 12,315,904 25MB 10.1 h 1.5 min
v5n6 265 206 3,091,120 6.6 MB 6.6 h 1.5 min

Table 6.1: Training using YOLO models on our GPU server. We configured
the training with early stopping : In this case, the training is stopped if no
significant increase in the model can be achieved. This results in a different
number of epochs for the training. The maximum was set to 400 epochs. We
also give the normalized training time to one epoch as a reference.
The grey line corresponds to the model we later use in this work.

We used the RaspberryPi Model 4 B with 4GB of RAM and a 32GB SD-card
from Kingston. The OS was Debian 12.2 and Python 3.9.17 with torch-1.10.2
were installed.

Using these four devices, we evaluated YOLO and will discuss the results in
the following section.

6.2 Perfomance Evaluation of YOLO

We evaluate three selected YOLO models with different complexities for high-
resolution images, namely the large (l) one YOLOv5l6, the small (s) YOLOv5s6,
and the nano (n) YOLOv5n6. We trained the models on our GPU server with
automatic batch size optimization and early stopping with a maximum of 400
epochs. The latter stops the training if no further improvement of the model
occurs. The results are listed in Table 6.1. The effect of the model complexity,
i.e., the number of layers and parameters of the model, influences the training
times. Due to the varying number of epochs, we normalized the training time
to one epoch. Depending on the type of the model, the training takes 6.6 h to
10.1 h. The model size is also relevant for the later deployment: Not all model
sizes can run on all devices due to limited resources.

After the training, we tested the models on our Reference dataset described
in Section 5.3.1. Table 6.2 lists the results, and one can see the effect of the
different devices. Obviously, the more powerful devices can run the inference
faster than the constrained ones. The smallest model, the YOLOv5n6, can
also run quite performant on a RaspberryPi and requires just 388ms per image
for the inference using the smallest model. The RaspberryPi shows a special
behavior when running the large model: When the temperature of the CPU
reaches 85 ◦C, throttling is activated and reduces the performance, i.e., the
inference speed of the model. The RaspberryPi required approximately 3.4 s
per image for the first images, i.e., when the CPU was cold. After a while, the
temperature reached the critical temperature of 85 ◦C and the inference time
increased to more than 5 s and then varied between 3.4 s to 5 s, resulting in the
average of 5 s as shown in Table 6.2. This throttling kept the temperature around
85 ◦C and reduced the risk of damage due to overheating. As a countermeasure,
one could actively cool the CPU with a fan and increase the number of images
that can be processed until the throttling is activated.

This relationship between the inference time and the computing power shows
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Model RaspberryPi PC Server GPU
YOLOv5l6 4961 ms 863 ms 163 ms 42 ms
YOLOv5s6 797 ms 156 ms 71 ms 24ms
YOLOv5n6 388 ms 58 ms 53 ms 22 ms

Table 6.2: Inference times using YOLO models on different computers. The
results show one advantage of YOLO: One can easily adapt to the available
computing resources for training and inference by selecting the best model for
the given device and application.
The grey line corresponds to the model we later use in this work.

Model FP TP FN Prec. Recall F1

YOLO5l6 97 867 622 0.899 0.582 0.707
YOLO5s6 179 873 616 0.830 0.586 0.687
YOLO5n6 130 826 663 0.864 0.555 0.676

Table 6.3: Evaluation of the YOLO models on the Reference Dataset. It shows
the effect of the model size: The more complex the model, the better the per-
formance.
The grey line corresponds to the model we later use in this work.
FP = False Positive, TP = True Positive, FN = False Negative

the importance of the ShadowWolf as described in this work: We aim to be
model-independent to train a model fitting best to the hardware constraints.
One can quickly adapt to the available resources: Should the system run on an
embedded computer, the nano versions (i.e. YOLOv5n6) might be the choice.
More complex models can be used if a more powerful machine is available.

Not only is the inference time of interest, but also the quality of the detec-
tions. After the training, we evaluated the performance regarding the F1-score
for three different YOLOv5 models using the metrics, which were introduced
in Section 3.5. Table 6.3 shows the results: Similar to Table 6.1, the model
complexity has a notable effect: The largest, most complex model performed
better than the nano model version.

6.3 Summary of the Evaluation of YOLO

Our evaluation shows the three main advantages offered by the YOLO frame-
work: Firstly, it provides good object detection results with little effort for
training. Secondly, it can be easily scaled to run the inference on devices with
different computing capabilities. Lastly, the developers of YOLO are pretty
active and release new versions regularly. Therefore, we decided to use YOLO,
more precisely, the YOLOv5l6 model, for our ShadowWolf .

Labeling a large amount of images requires a lot of time. The following
section introduces Wolf-or-Not , our web service to offload this work to many
people using crowdsourcing.
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Chapter 7

Wolf-or-Not : Online Labeling

Chapter 2 discussed in Section 2.4 the challenges in labeling images. We want
to go a step further from standard labeling approaches for this work and create
a tool that can be used to evaluate images automatically. The question “What
can be seen in this part of the image?” is not answered by a low number of
domain experts but by an extended number of interested online users. This
crowdsourcing approach, combined with the automatization of the input and
output data handling, are the key features of Wolf-or-Not , as discussed in this
chapter. It offers flexibility to adapt easily to different usage scenarios.

In this chapter, we use Wolf-or-Not as a toolchain to remove false positive
detections from a detection model and improve its performance.

This approach is massively extended and generalized for ShadowWolf as we
discuss it in Chapter 8. Here, Wolf-or-Not is used as a general tool to collect
additional user feedback on the decision of a particular model. The combination
of state-of-the-art machine learning models with flexible user feedback paired
with several pre- and postprocessing steps make the main difference between
the plain Wolf-or-Not and the ShadowWolf .

In this chapter, we evaluate Wolf-or-Not ’s capabilities to reduce the number
of false positives as published in [94] and take the first step towards ShadowWolf .

7.1 Idea of Wolf-or-Not

As discussed in Chapter 5, we deal with realistic images of wolves. To use those
to train a new detection model requires good labels. Acquiring those can be a
tedious task for individual persons. Here, the idea of Wolf-or-Not kicks in: It
splits the images into certain regions and displays those to interested users in a
simple web interface. Here, the user clicks on the class he believes to see. This
information is stored, and the next image is loaded. The results can be used to
retrain a model and improve its performance.

The main idea of our approach is to use crowdsourcing for this labeling task:
We start with a small dataset of labeled images to create a first model. We
use this model to detect wolves in an unlabeled dataset. Especially in a new
environment, we sometimes get many false detections, i.e., false positives. We
use those detections to create sub-images that only contain the detection. Those
are uploaded to our web application we call Wolf-or-Not . Here, users click a
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button denoting what is visible in the subimage. After a subimage has received
enough votes, the results can be downloaded and used to create labels for the
original image.

Since the app is optimized for mobile devices, every user can click through the
images and easily create and confirm hundreds of labels within a few minutes.
Especially with a continuously increasing dataset with different backgrounds
and camera angles, we are sure that this approach will reduce the effort for
model developers by offloading the labelling task to many other users.

7.2 Methodology and System Architecture

Our system is designed to be model-agnostic. We use YOLO as our model as
discussed in Chapter 6 together with Python and PyTorch1 for the implemen-
tation. We use two datasets for this work. The base dataset from Section 5.3.2
is used as the initial one and used to create our base model. The second dataset
is our test dataset from Section 5.3.3 and is used to evaluate the performance.
Both datasets are entirely different from each other, contain day and night im-
ages, and are fully manually labeled.

7.2.1 Wolf-or-Not Architecture

The architecture of our system is depicted in Figure 7.1. We consider 5 classes:
wolf, dog, person, unsure, and nothing from the listed, whereas most images
only contain wolves or nothing from the listed.

We start with our base dataset and generate our base model using the
yolov5l6 weights. With this model, we can run the inference on a new dataset of
unlabelled images and get soft decisions with a bounding box, i.e., a probability
and a given class. For each detection, the corresponding part of the original
image is cut and stored as a separate subimage. One image can result in multi-
ple subimages if it contains multipe detections. Those subimages are uploaded
to our Wolf-or-Not web app. A set of those subimages is shown in Figure 7.2.
Some objects can easily be identified as wolves, while others are hard to identify.

In the web app, as shown in Figure 7.3, the user clicks on the button cor-
responding to the class shown in the image. After clicking one of the buttons,
the next randomly selected image is shown to the user. Depending on the user’s
experience, voting for an image only takes a few seconds, leading to many votes.
In our case, even inexperienced users created 500 votes in less than 25 minutes.
Section Section 7.2.2 gives more details about this app.

We do not require a registration or authentication to allow as many users
as possible to participate. Due to this, a user can click on the wrong button
accidentally or on purpose, which will result in wrong labels. To overcome this
problem, we take two countermeasures: First, we require several votes to accept
the image. Depending on the expected users (friendly users or anybody), we
assume that 2-4 votes per image are sufficient to get good results. In the eval-
uation phase, most users were from our department, students, or other friendly
persons. Therefore, we accept images with at least two votes. The second
countermeasure is the number of images in the app. During the evaluation, we

1https://pytorch.org/

https://pytorch.org/
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Figure 7.1: In the proposed architecture for Wolf-or-Not , we start with an
initial model and refine it using user feedback from our Web App. This iterative
approach helps to improve an existing model by adding more images.
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Figure 7.2: A variety of subimages detected and cut after the inference process
using the base model. All have a similar probability of 0.7 to 0.9 being a wolf.
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always had at least 1000 photos in the system. This reduces the risk of clicking
purposely on the wrong class twice for the same image.

After a sufficient number of images got enough votes – we assume a median
of 2 votes per image as discussed before – the results can be downloaded as a
JSON file. From that, we create the new labeled dataset in the following steps:

1. We only consider subimages where the votes are at least 60% certain for
a particular class. This filters images where the users were not confident
or clicked on the wrong class.

2. We neglect subimages labeled as unsure or nothing from the listed. Those
are usually not relevant to our wolf class.

3. We group the subimages according to the original image. The idea is to
handle only images, where all subimages are available. We drop incomplete
images.

4. Lastly, we create the labels for the original – formerly unlabelled – images
according to the votes from the subimages.

The outcome is a set of labelled images that we add to our base dataset. The
result is a new training dataset n+1. This, we use to generate the model n+1 as
shown in Figure 7.1. We evaluate this model against the test dataset regarding
the performance, namely the F1-score. Details about the metrics are given in
Section 3.5. If the performance has increased, i.e., the F1-score is closer to 1,
the loop is continued by replacing the base model by the new model n+1.

In case of a reduced performance, we have two options:

1. If unlabeled images are available in the app, we continue on the current
images and wait for more votes. We get a new dataset from the app and
continue from there.

2. If no more images are available in the app, we add more unlabeled images,
run the inference with the previous model version, and continue from this
step.

This procedure improves the detection model.

7.2.2 Our Web App

With our Wolf-or-Not , we want to be accessible to as many users as possible.
Therefore, the user interface is kept simple and intuitive. Figure 7.3 shows the
mobile view. The user sees an image and clicks on the corresponding class. In the
example image, those classes are wolf, dog, or person. The user can also select
if he is unsure or if nothing from the listed classes is shown. The interface also
allows to add additional properties: Are multiple of the shown classes visible,
is the object hard to see, or are various instances of one class shown? After the
user clicks one of the buttons, the result is stored as a vote, and the next image
is loaded. This simple concept of click and load next allows quick labeling on the
go on the mobile device. In the current version, no authentication is required
to keep the burden of participation as low as possible.
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Figure 7.3: Wolf-or-Not shows an image of an object. The user decides what
he sees: wolf, dog, person, etc. He can also add attributes like hard to see.
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To access the current status of the labeling process, all users have access to
the status page. Here, some simple statistics are displayed. We show the number
of votes, the number of images currently assessed, and the active datasets. We
also provide statistics like the mean, median, min, and max values of votes per
image. A significant value to decide if it makes sense to download the current
data is the percentage of subimages with a certain number of polls.

After collecting sufficient votes, the user can download the results as a JSON
file. For this evaluation, we only consider results with at least two and, opti-
mally, three votes to reduce the risk of wrongly clicked images. The results
contain the name of the image, the number of votes, the individual vote results
(how often did one click on which class), and the overall class results. The latter
tells the probability of the given image being to a specific class. This data is
later used to create or evaluate the new labels.

7.3 Evaluation

This section will evaluate the performance of Wolf-or-Not . We use the metrics
from the earlier Section 3.5. The use case for the evaluation is described in Sec-
tion 7.3.1. The results are shown in Section 7.3.2 and discussed in Section 7.3.3.

7.3.1 Use Case

For this evaluation, we consider two rounds using our Wolf-or-Not . We start
with 2069 unlabelled images and our base model, which creates 4000 subimages,
i.e., on average, two subimages per image. We uploaded those and waited for
the users’ votes. We downloaded the results after we got 7395 votes (median:
2.0 votes per subimage). The base model created many false positives, leading to
several images with multiple subimages as depicted in Figure 7.4. Those wrong
labels were removed by the users using our app. As the output, we generated
a relatively small number of 96 completely labeled images, which were added
to the base dataset. This dataset now contains 1703 images and is used to
generate the model n+1. We evaluate the performance regarding the F1-score
as described in Section 3.5. The performance has improved, and we continue
with a second round.

We used another set of 2000 unlabelled images for the second round and split
it into 1544 subimages using the previously generated model n+1. Compared
to the first run with our base model, the number of false positives is reduced,
leading to a lower number of subimages. Therefore, the number of complete
images increased as more images generated only one subimage in contrast to
several for the base model. We add those to the n+1 dataset and get our n+2
training dataset with 2259 images used to generate the model n+2. We give the
exact results in Table 7.1.

7.3.2 Results

After we have generated our three models, the base model and the two new
ones n+1 and n+2, we run them on our test dataset from Section 5.3.3 and
calculate the metrics as described in Section 3.5. Here, we focus on the F1-score
but also give the precision, recall, and absolute number of false positives, true
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Figure 7.4: Wrong detections of wolves with the base model: The first model
detected a tree and an isolator as a wolf.

n+1 n+2
Input images 2069 2000
Subimages in App 4000 1544
Votes in App 7395 2638
Median Votes per subimage 2.0 2.0
Mean Votes per subimage 1.85 1.71
Subimages with 2+ Votes 2022 781
Subimages with 3+ Votes 1120 385
Resulting complete labels 96 556
Total number of images for training 1703 2259
Image collection 23-01-23 22-03-29
Weather cloudy sunny

Table 7.1: Input images used for the training of the two new model generations
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base model n+1 n+2
Precision 0.779 0.935 0.95
Recall 0.843 0.853 0.845
F1 0.810 0.892 0.896
False positives (FP) 481 120 84
True positives (TP) 1700 1720 1704
False negatives (FN) 317 297 313

Table 7.2: Comparison of the given metrics for different models evaluated on
our test dataset consisting. The test dataset consists of 2017 instances of wolves
in 1526 images. The main metric is the F1-score which improved for all runs.

positives, and false negatives in Table 7.2. The results show that false positives
are significantly reduced, especially when comparing the base model to the n+1
model. We evaluated this result by manually checking the detections from the
base model: A notable number of false positives can be seen. Especially a tree
and an isolator were often incorrectly detected as a wolf, as shown in Figure 7.4.
The improvement of the F1-score between n+1 and n+2 is comparably low.

We are further interested in the statistics: Where did we adapt the dataset?
For that, Figure 7.5 and Figure 7.6 show the normalized frequencies of the
scores for the creation of model n+1 and n+2, respectively. Here, we compare
the detections of the previous model (the one used to create the subimages)
with the resulting user votes. Correct votes are marked green, and incorrect
ones are marked red. Figure 7.5 shows that the base model created a lot of false
positives with high probability: The red peak between 80% and 90%. In the
next iteration step, as shown in Figure 7.6, this peak disappeared: On the test
dataset, all detections with a score higher than 80% are correct.

7.3.3 Discussion

The first iteration step showed that using our approach significantly increased
the performance. The F1-score increased from 0.810 to 0.892 and to 0.896 for
the second iteration. The absolute number of false positives is reduced from 481
(base model) to 120 (n+1 ) to 84 (n+2 ). The true positives and false negatives
stay almost constant. Figure 7.5 and 7.6 support this statement: Mainly the
strong false positives are removed using our approach.

Handling the images is mainly done using scripts, and the evaluation is dis-
tributed over several volunteers. Therefore, using this crowdsourcing approach,
Wolf-or-Not offers a good option to evaluate continuously arriving camera im-
ages.

7.4 Summary

Wolf-or-Not is a flexible web service for various applications. In the chapter, we
evaluated it to reduce the number of false positive detections in a continuously
growing training dataset. Finding animals not detected by an object detection
model is more difficult, and the objective of ShadowWolf , as described in Chap-
ter 8. There, we use Wolf-or-Not in a different way: It supports object detection
to find hidden wolves. This is possible due to the flexibility of Wolf-or-Not . We
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Figure 7.5: Normalized frequencies of the probabilities / scores for the model
n+1. Correct means that the detected class is the same as the user’s. If a
model detectes a class different from the one the user voted for, the detection is
considered wrong.
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Figure 7.6: Normalized frequencies of the probabilities / scores for the model
n+2. In comparison to Figure 7.5, the number of wrongly detected images with
high probabilities is significantly reduced: All detections with a probability
higher than 80% are correct.
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continuously improve Wolf-or-Not and have made it publicly available under the
GNU General Public License v3.0 in our repository on GitHub2. Furthermore,
a test server is available online3.

2https://github.com/ComNets-Bremen/Wolf-or-Not/
3https://wolf.comnets.uni-bremen.de/

https://github.com/ComNets-Bremen/Wolf-or-Not/
https://wolf.comnets.uni-bremen.de/
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Chapter 8

ShadowWolf

With Wolf-or-Not , as presented in Chapter 7, we offered a flexible tool usable
to label and evaluate images. In the use case, it showed good performance in
reducing the number of false positives. For mAInZaun, we are also interested
in the hidden and only partly visible wolves. Those are hard to detect by
most object detection algorithms and are often neglected in the research. Our
ShadowWolf focuses on those false negatives and combines object detection with
human validation. The usage of the output is manifold and can be used, for
example, to train arbitrary models or support people screening wildlife images.
We published this work in [91].

8.1 Motivation for ShadowWolf

Detecting animals in camera trap images is not an easy task. As discussed in
Chapter 2, most work focuses on the obvious animals in the direct foreground
or clearly visible in the background. While this might be acceptable for general
animal monitoring, the requirements for our mAInZaun project are higher. We
aim to detect also the barely visible predators. The challenges for this are
manifold and were discussed in Chapter 5. At the same time, we would like
to run the inference directly in the wild. Here, the available hardware for the
detection might vary, and we need the option to adapt to various platforms with
different computing capabilities. Also, the cameras’ field of view can change and
requires additional training data. To quickly adapt to this, a continuous flow
of new labels and images needs to be served to optimize the performance of the
system.

Therefore, we decided not to focus on developing a new model but create a
complete framework for our project: ShadowWolf . It allows to analyse a stream
of continuous images or even videos from camera traps, detects and classifies
objects with a combination of AI and human support, and creates the training
data for arbitrary models. The complete workflow can run automatically with
only minor human interaction. We also introduce a flow to evaluate and improve
new models automatically.

For the latter, we use an iterative approach as depicted in Figure 8.1. We
assume that we regularly receive new images from different camera traps. We
label them using our ShadowWolf , create a new detection model, and evaluate
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Figure 8.1: Continuous learning and automatic adaptation to new environments
and animals are beneficial, especially for camera trap images. The depicted
iterative approach labels the images using our ShadowWolf as introduced in this
work. We use the generated labels to train a new model generation. Afterward,
we evaluate the performance of the model on our reference dataset. If the
performance is improved, we have an improved model. Otherwise, we continue
with the data collection.

its perfromance on our reference dataset as introduced in Section 5.3.1. If the
performance regarding our metrics (c.f. Section 3.5) is improved, we have a
new, improved model we can use for the ShadowWolf and other applications.
All steps are automated (besides the crowd-sourcing evaluation of images).

8.2 Methodology and System Architecture

We discussed in the state-of-the-art in Chapter 2 that most projects focus on
optimizing the models on the camera images. We propose a different approach:
Our toolchain named ShadowWolf focuses on the training and the evaluation of
arbitrary models. The idea is to combine state-of-the-art technologies for image
(pre)processing and data handling into one flow combined with crowd-assisted
validation and enhancement. ShadowWolf also focuses on the repeatability and
reproducibility of the runs by packing the results, including the configuration
and the excessive log files, into one output directory per run. The script only
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takes some minor parameters, forcing the user to make all changes in the con-
figuration file, leading to better documentation.

In the end, this also helps to use ShadowWolf in a continuous training envi-
ronment: The training dataset can be continuously improved by labeling camera
trap images with minor administrative user interaction as depicted in Figure 8.1.

The idea of ShadowWolf is to handle three types of input data that come
from automatic capturing systems like camera traps:

1. A single image

2. A series of images over a fixed period (time-correlated)

3. A (short) video sequence (which can be converted into a series of images)

The output is a labeled training dataset usable for training a new model.
Due to the variety of models in image recognition and the speedy development,
we try to be as model-independent as possible.

ShadowWolf consists of several steps that can be connected in different ways.
Figure 8.2 on page 82 depicts the main structure and possible options. Shad-
owWolf is the part inside the dotted box. Outside, the performance evaluation
steps used in Section 8.3 are shown.

In the preprocessing block, we analyze the image, create batches of time-
correlated images, and optimize the quality optionally. Afterward, we try to
find changing parts by removing the background and creating image segments
with potentially moving objects. The object detection follows those steps. Here,
an object detection model is used to detect animals, as discussed in Chapter 3.
In this work, we use YOLO as evaluated in Chapter 6. This is the central part
of ShadowWolf as an optimized version of a model can replace the existing one.
Afterward, we perform further steps to remove duplicate detections, evaluate the
results, and map everything back to the original images. Finally, we calculate
the detections and generate the output depending on the requirements. In our
case, we create a training dataset.

The main idea is to allow a flexible connection and usage of the separate
steps: Each step gets all the information from the previous ones and benefits
from the knowledge gained. The drawback is the increased complexity of han-
dling missing parameters. The steps are configured in a central configuration
file. This allows us to re-run the steps and document the results quickly. Af-
ter each step, the current status, i.e., the variable files and created images, are
stored. In case of an error, ShadowWolf can be re-started from the given point.
This is beneficial, especially when using long-running operations like complex
image processing or analysis on large datasets.

We created this work with two main applications in mind. The first is the
(re)training of models. Camera traps often have static positions and, thus, a
fixed field of view. This can lead to domain-specific models: In doubt, the
model detects everything that is not background as an object. Easily adding
new camera trap images to the training dataset can reduce this problem. Addi-
tionally, new species might become interesting. Also here, an adapted training
dataset is required. This application is directly related to our project. Second,
camera trap images have to be reviewed: What species triggered the camera?
Our ShadowWolf processes those images, and only the critical, i.e., ambiguous
photos, are shown to the human experts. Both applications take advantage of
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Figure 8.2: The ShadowWolf framework and the evaluation steps used in this chapter: The objective is to convert an input video, image,
or series of images into good-labeled images. ShadowWolf itself is the part in the dotted box. It has three main parts: Preprocessing,
detection, and postprocessing. For each part, several options for different submodules and configurations exist. The detection (step 5)
contains a trained animal detection model. In the iterative process, as depicted in Figure 8.1, it will be replaced by the improved version.
We evaluate the performance using our reference dataset and the metrics. The boxes outside the dotted area indicate this evaluation.
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such an automated framework. The collected images are uploaded to a server
where ShadowWolf performs the processing. In the end, the results can be col-
lected with only minor human interaction. The following subsection explains
the individual steps in detail.

8.2.1 Analysis

First, we extract meta information from the original images: the EXIF, IPTC
data, and image size. Those can contain information about the camera, time,
copyright, keywords, image descriptions, etc., and can get lost during image
processing and storage. We also store if the images are greyscale or RGB. We
do not save the file system attributes (created, modified, accessed) as those are
easily accidentally changed and unreliable. The most important attributes are:

• The colorspace of the image. Especially if the source images contain day
and night images, this information can be important if color-dependent
functions or algorithms are used in one of the following steps.

• We also store the camera type, lens type, and serial number to be
able to remove camera-specific distortions or handle other camera-specific
operations.

• The EXIF DateTime-Fields are used to group the input images by the
time, i.e., create a series of images. Our experience shows that those times
are more reliable than the file system attributes.

• For the IPTC tags, we store the keywords to filter the images during the
analysis phase.

• The original image resolution.

8.2.2 Batching

Camera Traps often give a series of images: A motion detector activates the
camera, and it takes a certain number of images. Those are usually collected
in a fixed interval, in our case, two images per second. Knowing about those
time-correlated images can be beneficial for the next steps. For example, the
light, weather, and general environmental conditions will be similar within such
a batch of images. We use this information for the segmentation in one of the
following steps.

We have tested two different types of splitters:

• Time Series Splitter analyzes the EXIF time between two images for
the given series of input images. We assume that a camera stores several
images when motion is detected. In most of our cases, 10 to 70 images
show an object moving through the recorded area. The splitter detects
those series and converts them to separate batches of images.

• Video Splitter converts a short video sequence into a batch of images.
This batch can be handled the same way as the output of the Time Series
Splitter.



84 CHAPTER 8. SHADOWWOLF

Our collected data data consists of individual images, so we focus on the
Time Series Splitter. For the batching, we use the EXIF-tag DateTime, which
is, in the case of our camera, identical to DateTimeOriginal and DateTimeDig-
itized. The input images are sorted by date and time. Is the time between
two consecutive images longer than a certain period defined in the config file,
ShadowWolf splits the series to a new batch. For our experiments, a value of
5 seconds was a reasonable tradeoff.

8.2.3 Preprocessing

In the preprocessing, ShadowWolf optimizes the images for the following steps.
The objective is to normalize the images from different sources in a way the
next steps get – based on the meta-data – as similar images as possible and
will focus on the content, i.e., objects. For example, preprocessing can be used
to remove some parts from the camera trap images: Some manufacturers add
a logo and the date and time to the pictures. Those additional images can be
problematic in the training phase of a new model, especially when using images
from heterogeneous sources: The model might focus on the camera brand logo
instead of the real content.

Another option for this step is to remove the spherical distortions as dis-
cussed in Section 5.2.7.

In the current version, we have implemented a handler that removes the
distortion using OpenCV1 based on the camera serial number. Using this ap-
proach, we can use different parameters based on the camera metainformation
collected in step 8.2.1.

If required, one can easily add more optimizations like normalizing the col-
orspace or adapting the brightness for some images.

8.2.4 Segmentation

One challenge in camera trap images is that the object of interest is not always
the main object in the image: Wolves might hide behind bushes and trees, and
a deer might be running in the background.

Information losses occur due to the downscaling, especially when using high-
resolution images combined with a lower-resolution model. This step aims to
find changing regions in the image and cut them into subimages. The model
in the next step can focus on this particular area. We are aware that some
models automatically perform this step using, for example, a Region Proposal
Network (RPN). To be as model-independent as possible, we implemented this
step separately.

Another advantage of this step is that we might catch an object of interest
that the model does not detect, i.e., a false negative. This will be evaluated in
the evaluation step described in subsection 8.2.7. Our App Wolf-or-Not shows
this subimage to the user. The user might recognize an object not detected by
the other algorithms. Therefore, this will help to detect hard-to-see objects and
improve the overall performance.

1https://learnopencv.com/understanding-lens-distortion/

accessed: 2023-08-19

https://learnopencv.com/understanding-lens-distortion/
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Figure 8.3: Five images of wolves that were detected as similar by the image
deduplication. They are reduced to one image, and the following steps’ workload
is reduced. Later, the detections are used for all similar images to prevent
information loss.

We currently offer two options for the segmentation. One is the MOG2-
BG subtractor (Gaussian Mixture-based Background/Foreground Segmenta-
tion Algorithm [95, 96]). This well-known algorithm creates boxes around mov-
ing objects in a batch of images by removing the background. It benefits from
the batching described in subsection 8.2.2.

Another option is implemented in the Img-diff-BG Subtractor. This
module creates an average image over the batch of images, compares this one
to each image, and marks the differences as boxes. This simple approach can
detect movements quite well and is an adapted and extended version of the
method described on pyimagesearch.com2.

Megadetector, as discussed in Section 3.3.4, is also an alternative that can
be used here. It requires quite a lot of computing resources. Therefore, we did
not implement it.

8.2.5 Detection

The detection is the heart of the framework. In Section 3.3 in Chaper 3, we
evaluated several frameworks in the area of machine vision and decided to use
YOLO in this step. Chapter 6 gives further details and evaluates YOLO.

The output of this block is a soft decision, i.e., a bounding box with detected
classes and their probabilities. We focus on the class with the highest probability
for the following steps and suppress the others, i.e., NMS.

The model used here can come from a previous run of ShadowWolf : The
output, i.e., the labeled images, is used to train a new model that can be used
here. This iterative approach is discussed in Figure 8.1 in Section 8.1.

8.2.6 Duplicate Handling

During our extensive evaluation, we sometimes got a lot of similar images. i.e.,
in most cases, the same or similar objects were detected. Figure 8.3 shows five
example images. In another case, 62 similar-looking wolves were detected. To
reduce the workload for the next steps and only focus on images resulting in a
gain during the training, we grouped those images and handled them as one. In
the Backmapping, as described in subsection 8.2.8, the detections are expanded
to similar images to prevent information loss. The imagededup-Handler is
based on [97] by idealo and is quite powerful in detecting similar images. This

2https://pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-

with-python-and-opencv/, accessed: 2023-08-19

https://pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/
https://pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/
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module groups similar images and treats them as one image for the following
steps.

8.2.7 Evaluation

This step is one of the most important ones in our work, as we can use user
interaction to strengthen or weaken the detections. At this point, we allow
a review of the detections by humans and increase the quality of the output
training data. We have two options:

• Wolf-or-Not is our web service introduced in Chapter 7. Here, we use it
to show the given detections to interested users. They review the detec-
tions and select what they see. This information is used to remove false
positives or strengthen the outcome of the previous detections.

• Manual Evaluation is another option: One can manually validate the
detections and remove the wrong ones. This option is very time-consuming
and is only considered for debugging reasons.

8.2.8 Backmapping

In Subsection 8.2.4, we (optionally) split the image into subimages. During the
detection, as described in Subsection 8.2.5, we further narrowed the images to
smaller ones. This has to be undone: We want to have the highest resolution
of our findings from the previous steps in the original image. We call this
step backmapping. The output of this module contains information about all
detections for each image converted back to the original image. Those include
the origin of the detection (user information, detector, etc.), the probability
for a particular class, and the bounding box for the original image. Figure 8.4
shows an image created for debugging reasons. For the left wolf, two boxes exist:
The outer one is from the segmentation. In the evaluation step, the users of
Wolf-or-Not agreed with 100%, that this image contains an object of class wolf.
The inner box comes from the detection. In this case, YOLO was 90.8% sure to
detect an object of class wolf. Additionally, the users in Wolf-or-Not agreed to
see a wolf by 100%. YOLO did not detect the animals on the right side. Users
in Wolf-or-Not agreed with 67% that they see a wolf. This is a good example
of the power of the combined approach.

8.2.9 Decisions

After increasing the data for each image in the previous steps, we are now
condensing the information. We combine the information and decisions from
the previous steps to get one main decision. The information comes mainly from
the module Detection (step 8.2.5) and Evaluation (step 8.2.7). Information from
the batches, i.e., time information, can also be used.

First, we have to combine the boxes from the previous step as they might
overlap, as seen in Figure 8.4. We get all boxes from an image, and check if
they overlap. This is the case if the IoU is over a certain threshold. Section 3.5
gives more details about the metrics. In this case, we combine the boxes and
also the detections. As a result, we get an array containing each box and all
corresponding detections.
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Figure 8.4: Example output from the backmapping module. For the left wolf,
there are two segments: One comes from the segmentation and one from the
detection. Both have probabilities from Wolf-or-Not . The detector did not
recognize the right wolf. Here, only the user-generated probabilities from Wolf-
or-Not are available.

Symbol Meaning
c The specific class
i The detector

dc,i The detection from the given detector for a specific class
wi The weight of the given detector
d̄c The result of the object being in a specific class

Table 8.1: The notations for the weighted probabilities.

We use the weighted arithmetic mean to calculate the probabilities of an
object being in one class. The used notations are listed in Table 8.1. Classes are,
for example, Wolf, Human etc. A detector is one step returning a probability for
an object being in a specific class. As the reliability of the different detectors
might vary, the individual detectors can be weighted: One might trust the
output from Wolf-or-Not more than the one from the YOLO detector. We do
this as follows:

First, we assume that all detectors return the detections in the closed interval
0− 1 (8.1).

dc,i ∈ R | 0 ≤ dc,i ≤ 1, ∀c, ∀i (8.1)

The weights for all detectors have to sum up to one to form a valid probability
function (8.2)

∑

∀i

wi = 1 (8.2)

Under the assumptions (8.1) and (8.2), the weighted arithmetic mean can
be described as in (8.3).
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Figure 8.5: The automatically generated training dataset is checked using, for
example, LabelImg. The boxes can be fine-tuned to increase the quality of the
generated model. The left box could be slightly larger, whereas the right one is
too big.

d̄c =
∑

∀i

wi · dc,i (8.3)

It returns the combined probability that the result belongs to a specific class.
If all detectors’ weights are equal, this results in the arithmetic mean. If several
detections from one origin are available, they are used twice and normalized
again. This happens in the case of combined boxes from one source.

We use NMS, i.e., select the class with the highest combined probability
and store the class and the probability for the processing in the next step. The
training data generator will convert those combined probabilities into a usable
output format for further processing.

8.2.10 Training Data Generator

In this last step, we stop the processing and offer several options to export and
validate the results. The detections from the splitting might not result in well-
aligned boxes: They tend to be a little bit larger than necessary, leading to a
decreased quality of the training data and, thus, for the generated model. The
bounding boxes can be reviewed and adapted with a tool like LabelImg (c.f.
Section 3.4) as depicted in Figure 8.5.

We got full-scale, full-resolution images from the previous step with the
corresponding labels and decisions. These images are now converted depending
on the requirements. Right now, we offer three possible options:

1. We export the full images and labels with the hard decisions in the YOLO
data format. This can directly be used to train a new YOLO model.
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2. We export the full images and labels with the soft decisions. This can be
used to evaluate the results.

3. We create no output and use the previous step’s decisions directly. This
is mainly done for debugging.

Other outputs can be implemented easily. For example, if the output of
ShadowWolf is used to train a classifier as we did in Section 3.3, one can cut the
detections to squared images and export them in the required directory struc-
ture. This can be used to train, for example, a MobileNet model in TensorFlow
or PyTorch.

The following subsection describes additional functionalities tha can be im-
plemented using ShadowWolf . Furthermore, we explain some more technical
details of our implementation.

8.2.11 Additional Functionality

As mentioned before, the objective of ShadowWolf is to 1) run with only little
user interaction, ideally automatically (for example, as a regular batch job) and
2) focus on repeatability and reproducibility. Those two objectives make it ideal
for an iterative process for continuous labeling and detecting objects in camera
trap images.

For the use case, we assume that new images arrive regularly. Those are
processed by ShadowWolf , resulting in a new set of annotated training images.
This is used to generate a new model, which can also be used by ShadowWolf .

Figure 8.1 shows the idea: We use the output of ShadowWolf to train a
new model. With this model, we run the inference on images from a separate,
annotated reference dataset. We compare the detections to the labels from the
reference dataset regarding the metrics. If the results get better, we have an
improved model. Otherwise, we will continue collecting data. The model quality
should ideally improve with every successful iteration, as we demonstrate in
Section 8.3.

8.2.12 Implementation Details

This section briefly describes the technical background of ShadowWolf . For
more detailed documentation and the source code, we refer to our git reposi-
tory3.

ShadowWolf is written in Python. At the time of writing, we used
Python 3.11 with several libraries and modules. The requirements.txt in the
git repository lists the exact versions.

The main configuration is done using a JSON file. It consists of two main
parts: The general configuration with the input directory and file type. The
second is an ordered list of modules and the corresponding module-level con-
figurations. Each module corresponds to a step in ShadowWolf . Appendix C
presents the configurations used in this work. The intermediate results and
connections between them are stored in an SQLite database. Each module
uses a separate directory to store binary data, like preprocessed images. The
documentation and source code in our git repository give further details.

3https://github.com/ComNets-Bremen/ShadowWolf

https://github.com/ComNets-Bremen/ShadowWolf
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Figure 8.6: The summarised evaluation flow from Figure 8.2. We run Shadow-
Wolf and compare the results with our ground truth labels.

The following section discusses the performance of our toolchain: How do
we evaluate ShadowWolf and compare the results?

8.3 Performance Evaluation

We use our reference dataset from our existing data for the performance eval-
uation. The creation of the dataset and its properties were described in detail
in Chapter 5. It contains 1140 images from two different wolf parks. 952 im-
ages have at least one wolf. 806 images were taken during daytime, 334 during
nighttime.

For the evaluation, we compare the generated labels from ShadowWolf with
the ground truth labels from the annotated reference images as shown in Fig-
ure 8.2 and in the summarising Figure 8.6. Ideally, all boxes should match
perfectly. In real life, we try to get as close as possible to this. The following
sections describe the details of our evaluation.

We use the metrics introduced in Section 3.5 for the evaluation. In the Sec-
tion 8.3.1, we describe our use case. The results are presented in Section 8.3.2,
8.3.3 and 8.3.4. Section 8.3.5 discusses the results, whereas Section 8.3.6 lists
future steps and challenges regarding ShadowWolf .

8.3.1 Use Case

We apply the toolchain to our reference dataset introduced in Section 5.3.1.
The manually created labels are only used for the validation and are not used
for the toolchain itself. The dataset includes day- and nighttime images. The
main class is “wolf” which has to be detected. For the individual modules, we
evaluate the following ones (c.f. Figure 8.2 and Section 8.2):
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Analysis: We extract all available information, including the IPTC tags and
the daytime.

Batching: We have time-correlated images, so we use the Time Series Splitter.

Preprocessing: The model used later on was trained using the unchanged
images. Therefore, we do not perform preprocessing on the input images.

Segmentation: To evaluate the effect of the image segmentation, we ran one
experiment with and another without the MOG2-BG-Subtractor.

Detection: We use the second generation (n+2) YOLO-based model from
Chapter 7.

Duplicate Handling: To reduce the workload in the next step (evaluation),
we use the deduplication for the complete ShadowWolf run.

Evaluation: For some experiments, we use our Wolf-or-Not tool to further
evaluate the results from the detection.

Backmapping: We map the detections back to the original images.

Decision: We merge the decisions from all possible inputs (Detection, Evalua-
tion) by applying the weighted arithmetic mean. We give a slightly higher
weight to the Evaluation part than to the detection (0.6 and 0.4) as we
trust the human evaluators more.

Training Data Generator: We use the YOLO data generator to create a
training dataset. Here, we need hard decisions and set the threshold to 0.5.
Objects rated with higher probabilities are mapped to the corresponding
class. Furthermore, we also create soft decision output in images, offering
a deeper insight.

In total, we run three experiments

• Evaluation of YOLO: Baseline experiment. We configured ShadowWolf to
only run the YOLO detection.

• Evaluation of Segmentation: We create subimages and let YOLO also run
on those.

• Evaluation of the complete ShadowWolf , including the Wolf-or-Not web-
service.

All experiments result in the same output format, which simplifies the eval-
uation. The next section compares the results regarding the metrics discussed
in Section 3.5.

8.3.2 General Results

First, we evaluate the complete dataset regarding the three experiments. The
results are shown in Table 8.2. Here, we analyze the complete set of 1140
images, i.e., the day and night images. One can see that the performance of
pure YOLO is quite similar to YOLO with the segmentation. The resulting
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FP TP FN Prec. Recall F1
YOLO 81 846 643 0.904 0.568 0.700

YOLO & Segm. 90 846 643 0.904 0.568 0.698
Full flow, α = 0.5 204 808 681 0.798 0.543 0.646

Full flow, α = 0.25 47 965 524 0.953 0.648 0.772
Full flow, α = 0.1 26 986 503 0.974 0.662 0.788

Table 8.2: The results from the three runs over the complete dataset containing
1140 images. α is the decision value for the IoU. If this value is larger than the
given α, the detection is correct.

F1-score is the same. Only minor differences occur for the false positives, true
positives, and false negatives. This was expected as YOLO internally performs
a similar technique, which seems to perform quite well.

For the complete ShadowWolf , we already know from the review in Sec-
tion 8.2.10 and Figure 8.5 that the generated boxes might not fit perfectly to
the objects, resulting in too many false positives. To take this into account, we
evaluate the results with different values for α when calculating the IoU: Be-
sides the default value of α = 0.5, we also use α = 0.25 and α = 0.1. Table 8.2
shows the expected results: Lowering α significantly reduces the number of false
positives.

We further visualized the effect of α by plotting the detections with the
ground truth and the IoU in one figure, as displayed in Figure 8.7. The Fig-
ures 8.7a and 8.7c show only partly detected wolves. This happens if the wolf
is barely moving and not detected by the YOLO model. In this case, the mo-
tion detector gets only part of the animal, resulting in boxes that are too small
and leave out essential details. A similar happened in Figure 8.7b: The person
creating the bounding box can correctly mark the wolf disappearing behind the
tree. For our algorithm, only the clearly visible part is detected correctly. The
third case is shown in Figure 8.7d: Our image dataset shows that the wolves
often move pretty close to each other, resulting in this kind of image. Shadow-
Wolf detected one wolf. In the ground truth, the second wolf was marked as
another instance. In these cases, we mainly deal with boxes created using the
background subtractor, i.e., not the detection part. Those boxes are generally
not as exact as the ones from the machine learning model, but better than no
detection. Therefore, we find it valid to decrease α.

Table 8.2 shows that the false positives decrease and the true positives and
the F1-score increase according to our experience and expectations.

8.3.3 Effect of the Daytime

In Chapter 5, we discussed that the lighting conditions are essential to get high-
quality detections. We used the meta data stored in the analysis step to filter
the detections accordingly. Table 8.3 shows the same metrics from Table 8.2
for our 806 daytime images, whereas Table 8.4 shows them for the 334 night
images.

Comparing the results from the daytime images to the complete results shows
a general decrease in all metrics. This outcome is surprising as we assumed that
good light conditions result in good detections. The good visibility can explain
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(a) Only half of the wolf was detected dur-
ing daytime.

(b) A wolf disappears and is only partly
detected.

(c) Only a part of the wolf is detected
during the night.

(d) Two wolves were detected as one

Figure 8.7: Several detections resulting in an IoU smaller than 0.5. The green
boxes are the detections, and the red ones are the ground truth. The IoU is
given for each set of two boxes. C.f. also Figure 3.8 and Equation (3.4) in
Section 3.5.

FP TP FN Prec. Recall F1
YOLO 72 560 538 0.886 0.510 0.647

YOLO & Segm. 76 562 536 0.881 0.512 0.647
Full flow, α = 0.5 138 571 527 0.805 0.520 0.632

Full flow, α = 0.25 23 686 412 0.968 0.625 0.760
Full flow, α = 0.1 8 701 397 0.989 0.638 0.776

Table 8.3: The results from the three runs over the 806 daytime images. The
reduced number of total images has to be considered for the false positives, true
positives, and false negatives.
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FP TP FN Prec. Recall F1
YOLO 9 286 105 0.969 0.731 0.834

YOLO & Segm. 14 284 107 0.953 0.725 0.824
Full flow, α = 0.5 66 237 154 0.782 0.606 0.683

Full flow, α = 0.25 24 279 112 0.921 0.714 0.804
Full flow, α = 0.1 18 285 106 0.941 0.729 0.821

Table 8.4: The results from the three runs over the 334 nighttime images. Again,
the reduced number of total images has to be considered.

the decrease in precision, recall, and F1-score during daytime: Humans can
easily see distant wolves as such, especially when annotating a time series. For
the detector, this is quite hard and results in decreased results.

On the other hand, our YOLO model seems to have problems with wolves
directly coming or leaving the camera, i.e., one can only see the head or tail.
Here, the human interaction in Wolf-or-Not helps to detect those wolves and
increases the overall detection.

For the 334 nighttime images as shown in Table 8.4, the F1-score, in general,
is increased for all experiments. The limited detection range can explain this:
The built-in infrared spot of the camera can only illuminate a certain area,
according to the datasheet, a maximum of 15m. The advantage of a human
annotating distant wolves vanishes, and the general F1-scores increase. The
benefits of the motion detection for distant wolves in ShadowWolf are also re-
duced during nighttime, so the pure YOLO approaches perform similarly. For
this dataset, we also see the improvement of the metrics by reducing the α for
the IoU.

8.3.4 Required Computing Capabilities

We also evaluated the computing resources required by ShadowWolf . We ran the
experiments on a standard computer with an Intel-i7 with four cores and 12GB
of RAM. The runtimes of the individual experiments are listed in Table 8.5.
The ShadowWolf run is split into two parts: part 1 prepares everything for
the export to the Wolf-or-Not web service. Part 2 processes the data from
the web service. The time required for voting on Wolf-or-Not depends on the
number of users and their motivation and activity. In our case, it took 1-4
days to get sufficient votes for the 2274 subimages. The runtime for “YOLO &
segmentation” and “part 1 of ShadowWolf ” should technically be similar. For
ShadowWolf , we use the advantage of the deduplication: There are fewer images
to be preprocessed by the YOLO framework, resulting in approximately 20min
less runtime. Running the model on the images requires most of the time and
can be significantly reduced using a GPU or TPU.

We require a certain amount of disk space to create and store many interme-
diate images for better understanding and debugging. The size of the reference
dataset with 1140 images is 1.7GB. The amount of data exported to Wolf-
or-Not is just 71MB. The labeled images again have a size of 1.7GB. The
debugging images created in between are about 7.3GB. Those can be disabled
to reduce the disk usage.

The next section discusses those results in detail.
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Experiment Runtime
YOLO only 30.48min

YOLO & Segm. 88.03min
Full ShadowWolf part 1 57.35min
Full ShadowWolf part 2 9.22min

Full ShadowWolf complete 66.58min

Table 8.5: Comparison of the processing times on our computer. ShadowWolf
is divided into two steps. In between, the evaluation using the web service is
done. Here, we can not give a time as it depends on the number of users.

8.3.5 Discussion

The idea of ShadowWolf is to improve the detection of objects in camera trap
images, i.e., low-quality images. The performance evaluation shows that it can
significantly increase the detection compared to a pure model-based approach.
Compared to the pure YOLO, the F1-score increased from 0.70 to 0.79 for the
overall reference dataset. The disadvantage is that the automatically created
boxes (by the motion detection) do not perfectly fit the objects of interest, in
our case, the wolves. Those can be checked and adapted manually with a tool
like LabelImg (c.f. Figure 8.5).

Problematic cases are those with hard-to-see and barely moving objects.
Wolves distant from the camera are often not detected reliably. Our second step,
the background subtracter or motion detector, requires certain animal activity.
If this is missing, the object is not or just partly detected (c.f. Subfigure 8.7a).
Here, one can use alternative technologies: If the camera is not moving, static
reference images like our hourly taken ones can detect slow-moving animals
reliably. MegaDetector can also be involved here to create boxes around possible
objects of interest. Due to the modularity, one can add this to ShadowWolf
easily.

Another question is the objective of the run of ShadowWolf : Is it to label
a dataset or to reduce the effort for a visual image inspection? If an extensive
dataset has to be checked for wolves, ShadowWolf can lessen the workload
drastically by only showing boxes within a specific probability range. Detections
with a high or very low probability do not have to be checked. Only the critical
ones, i.e., Maybe a wolf?, must be checked manually by domain specialists.
The increasing number of wolf sightings will increase the workload of those
people. For that, we designed everything to be modular and extendable without
requiring user interaction. ShadowWolf can be started with a given dataset,
for example, uploaded to the web service from camera traps. The detection,
segmentation, etc. can run fully automatic. Also, the integration in our Wolf-
or-Not is easy, as an API for image uploading and result downloading already
exists. As a result, the user gets an annotated dataset and can decide how to
continue the work.

This can be used for the iterative approach: The training dataset can be
used to train a new model generation. This one can be automatically evaluated
and compared to another model using our toolset. If the performance increases,
the new model can be used within ShadowWolf , resulting in an overall increase
in the performance of the toolchain.
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Regarding the running costs, ShadowWolf does not require a lot of comput-
ing resources and can even run on standard consumer hardware in an acceptable
time. However, the run time of the object detection can reduced drastically by
using a GPU or TPU, as the execution of the YOLO model takes most of the
time. This is key for cost-sensitive users as they are often in the area of wildlife
monitoring.

8.3.6 Further Ideas and Challenges

We are continuously extending and adapting the parts of ShadowWolf . Cur-
rently, we are evaluating the time series evaluation. We plan to add a module
that benefits from the batching as described in Subsection 8.2.2. The focus is
here on the series of images, or more precisely, the location of the detections
joined with the probabilities. Those can be combined to increase or decrease the
trust in the detections. In simple words, does the movement of the detections
over time make sense? This can increase confidence in a specific detection over
time.

Another topic is the deployment of ShadowWolf : How can the images from
camera traps automatically be transferred to the system? Cellular Internet is
not always available, or the speed and the amount of data might be limited.
The workflows tailored to the potential users have to be discussed.

In the next section, we will summarise our work on ShadowWolf .

8.4 Summary

In this chapter, we introduced ShadowWolf – a toolchain designed to label cam-
era trap images and train new models automatically. The objective is also to
detect animals that are only partly visible or in challenging light conditions.
For that, we use in ShadowWolf a combined approach: The detection from
a state-of-the-art object detection algorithm is improved with user evaluation
in combination with a background subtractor. We create possible detections:
Where might be an animal of interest? Those are evaluated using our Wolf-
or-Not web service. Both results are combined to a probability. This helps to
remove false positives and add false negatives not detected by the object detec-
tion. The outcome is a labeled dataset that can be used to train a new model
or manually analyze the occurrence of wild animals.

We showed that our approach significantly improved the detections in the
performance evaluation. The F1-score on our dataset increased for our primary
class of interest wolf from 0.7 to 0.8 over all images and from 0.6 to 0.8 for
daytime images using our framework compared to the plain object detector. We
further evaluated the effect of the light conditions and the required computing
capabilities for our approach and the used object detection model.

The source code is available under the GNU General Public License v3.0 on
GitHub4.

4https://github.com/ComNets-Bremen/ShadowWolf

https://github.com/ComNets-Bremen/ShadowWolf


Chapter 9

Deployment

The objective of the mAInZaun project is to detect and deter the wolves or,
more general, predators directly at the fence perimeter. Although the project’s
objective is not a ready-to-sell product, we discuss several options for a possible
deployment. Ideally, all parts should operate autonomously without needing
maintenance or other human interaction over a certain time, at least several
days. The challenges are the same as discussed in Chapter 5: Mainly, the
limited energy, but also, weather and the weight of the devices are just some
points that are also relevant to this chapter.

We split this chapter into six parts. Section 9.1 describes our architecture
and the challenges. Section 9.2 focuses on the individual parts of the detection
hardware and selects the ones we use. Section 9.3 discusses the deterrents and
their activation. The wireless setup connecting the individual parts is described
in Section 9.4. Our implementation used for the deployment is called WolfNet
and topic of Section 9.5. The evaluation is discussed in Section 9.6.

9.1 Architecture

In this section, we introduce the deployment architecture, including the chal-
lenges. Figure 9.1 shows an exemplary deployment. The center line is the fence
with the mAInZaun components. We have cameras in three positions (center,
left, and right). Between those, we have several deterrents: two times flash and
four times sound. The fence divides the two sheep in the upper half from the
rest of the world (including one wolf) in the lower part. If the cameras detect a
wolf, the nearby deterrents are activated.

The challenges are manifold and discussed in Chapter 5. Exemplarily, we
added some to Figure 9.1. The vegetation and the weather are two challenges
affecting the detection and deterrents: The vegetation limits the camera’s view
and the effective range of the deterrents. Similar holds for the weather: fog, rain,
snow, etc. have a notable effect on camera, light, and sound. Other animals,
like dogs, or humans, are more challenging for object detection. The system
should reliably distinguish between wolves and others. If the system is unsure,
it can consider other classes of objects in the vicinity: If a human is nearby, it
is more likely to detect a dog and not a wolf. This requires powerful detection
hardware and also communication between the individual components of the

97
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Figure 9.1: The proposed architecture and some challenges. For simplicity, the
fence dividing the farm animals on the top and the rest of the world at the bot-
tom is indicated as the dashed, horizontal line in the center. At this perimeter,
we have cameras – shown in the center and partly left and right – and several
deterrents like sound or light-based ones. If one of the cameras detects a preda-
tor, the nearby deterrents are activated.
The deterrents and the cameras can be affected by several phenomena like other
animals (dogs, deer, humans, etc.), weather (reducing sight and range), vegeta-
tion, etc. Also, the energy is a limiting factor. The objective is to detect and
deter the predators.



9.2. ANIMAL DETECTION HARDWARE 99

Figure 9.2: The wolf detection works as follows: The detection system uses a
camera and a processing unit. Both can be combined in one device. If the
model running on the processing unit detects a wolf, it sends a message to the
deterrents wirelessly.

overall system. Also, the power supply is challenging: Most of the depicted
devices show a green battery. But three deterrents run low on power. This has
to be prevented, and the owner should be informed on time.

In the next section, we will discuss the design of our proposed system and
its possible deployment.

9.2 Animal Detection Hardware

The first part is the detection hardware. It comprises the camera and the
processing unit, as depicted in Figure 9.2. The processing requires also an
interface to activate the deterrents wirelessly in case of a positive detection.

9.2.1 The Camera

The market offers various cameras with varying functionality, technical specifi-
cations, and prices for all possible budgets. For this project, we focus on cameras
from well-known manufacturers, expecting them to provide reasonable support
and reliable spare part supply. We distinguish between standard RGB cameras
and thermal ones. We do not give the light sensitivity for the RGB cameras
as those values from the datasheets depend on the manufacturer and are not
always realistic. The camera’s resolution gives, especially for the thermal sys-
tems, an idea of usability: It is hard to distinguish a wolf from a teapot with
just a few pixels. We also discuss the connections: Is the camera connected
using Ethernet and Power over Ethernet (PoE), via the General-Purpose In-
put/Outputs (GPIOs) and Inter-Integrated Circuit (I²C), or via the special
camera connector Camera Serial Interface (CSI)? Cameras using WiFi require
additional power in the form of wires or batteries and, therefore, are not con-
sidered. We checked if the system could be placed outside without the need for
additional protection. Figure 9.1 shows the results.

The first line of Table 9.1 shows the camera we also selected for this work.
The Axis M2025-LE is a surveillance camera built for outdoor usage. It can
store images and videos in full HD resolution and also has infrared spots to
operate at night. It is connected to the processing unit and powered via one
Ethernet cable, reducing wiring effort.

Embedded devices often have a CSI interface to connect a camera to the
board directly. Here, various cameras with different resolutions, lenses, qualities,
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Model Type Resoultion Conn. Out? Price
Axis M2025-LE RGB 1920× 1080 PoE ✓ 425e
RaspberryPi Cam RGB 1920× 1080 CSI ✗ 29e
Logitech C920 RGB 1920× 1080 USB ✗ 100e
Grid-EYE IR-Array Thermal 8× 8 I²C ✗ 50e
Axis Q1941-E Thermal 384× 288 PoE ✓ 4500e
Flir Elara Thermal 320× 240 PoE ✓ 3600e
Flir E6XT Thermal 240× 180 – ✗ 2000e
Flir C5 Thermal 160× 120 – ✗ 690e

Table 9.1: Selected Camera Systems regarding their type, resolution, connec-
tivity, outside protection, and price. We used the Axis M2025-LE from the
first line for our work. We concentrated on well-known manufacturers to ensure
long-term supply. The last two lines contain our two hand-held cameras. Those
do not offer a live image stream. (Prices from June 2022)

and prices exist. We took the RaspberryPi Cam as an example. It is directly
mounted on the RaspberryPi and also offers full HD resolution. It is a plain
PCB without a casing and designed for an experimental setup rather than a
deployment. For an outside deployment, we have to build a custom case that
protects the camera from the weather and does not influence the camera’s lenses
or field of view. Everything should last outside for a longer period, which
requires some engineering effort. Therefore, we preferred cameras that were
already designed for outdoor usage.

Similar hold for the Logitech C920 : This is a standard computer webcam
connected via USB. It can be connected to all computers via USB and offers HD
videos. However, it is designed for office usage and not for outdoor applications.

As discussed in the Problem statement in Section 2.7, thermal cameras might
also be an option. In some situations, they might perform better as they detect
the heat radiated by mammals. As a drawback, they are expensive and offer
only a low resolution. The cheapest option is the Grid-EYE IR array, which is a
small 8× 8 array of thermal detectors. No real object detection is possible with
such a low resolution. The Axis Q1941-E and the Flir Elara are two thermal
cameras meant for outside usage and surveillance applications. Their resolution
is sufficient to detect objects but not to identify them in distance. Furthermore,
they are costly and unsuitable for mass deployment on a fence.

The last two Flir models, E6XT and C5, are given as a reference. They do
not offer the output of a live image but were used by us to evaluate the limits
of thermal imaging.

Altogether, we decided to use a camera that offers normal RGB images and
is designed for outdoor use. This is achieved by outdoor surveillance cameras
like the Axis M2025-LE we use in this thesis. Some processing, like automatic
image capturing, can be performed on the camera, but the main object detection
task must be performed on separate hardware. The next section evaluates the
available hardware platforms for this task.
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9.2.2 The Processing Unit

After we have discussed the available cameras in the previous section and se-
lected the Axis M2025-LE as the main model, we require a device to run the
inference on. Several devices and options exist to scale the performance accord-
ing to costs, energy, inference speed, etc. We also evaluate devices that combine
cameras and object detection in one device.

The board needs some communication capabilities to signal the detections
to the activators. This could be a standard GPIO-pin, a USB connection, or a
built-in wireless technology. Most devices offer an option to connect an arbitrary
wireless technology such as LoRa, as discussed in Chapter 4.

We evaluated the available systems that are used to perform object detection
or other kind of image processing offline, i.e., without the need for an internet
connection. We focus on systems with a comparable low price, i.e., less than
500e, having a more extensive deployment in mind. We checked the comput-
ing capabilities regarding the CPU used, the number of cores, and the clock
frequency. We also considered if an additional acceleration is built-in to speed-
up the inference task. Also, the available RAM and the type of storage are
evaluated. Many devices use a standard micro-SD card as a file system. Here,
the standard sets the limit: The SDXC-standard limits the maximum size to
2TB. Newer standards like SDUC increase this boundary to 128TB. Build-
in communication technologies like WiFi and Bluetooth can simplify the setup
phase and debugging. Therefore, we stated which are available. Operating ev-
erything in remote environments sets limits regarding the power. Therefore, we
list the maximum power requirements according to the datasheets. In the col-
umn camera, we list how one can connect an external camera to the system or,
if available, the properties of the built-in camera. Table 9.2 lists the hardware
we had a closer look at. We only consider the bare hardware shipped without
external components like case, SD-card, power supply, etc.

The most well-known system is the RaspberryPi ecosystem1. It offers a va-
riety of different platforms and computing modules. The quad-core CPU of
version 5 is announced to be up to three times faster than the predecessor. In
Table 9.2, we focus on the standard versions. Besides those, several compute
modules, embedded systems, or microcontrollers are offered by the RaspberryPi
Foundation but lack computing resources or are meant to design a completely
new system. The OS Raspberry Pi OS is an adapted Debian version and re-
ceives regular updates. From the hardware perspective, several GPIO pins are
available, and many add-on boards extending the RaspberryPi with various
functionality, like communication capabilities, are available. It does not have
an optimized GPU or TPU to speed up the inference task, but such can be
added, for example, using the Google Coral Accelerator. Besides the standard
connections like USB and Ethernet, a RaspberryPi has a CSI connector for
cameras available.

Another commonly used embedded hardware platform is the Jetson Nano
Developer Kit2 (commonly called Jetson Nano). NVIDIA, the developer, also
offers several compute modules to embed this system into new hardware. In
contrast to the RaspberryPi, the Jetson has a built-in GPU speeding up the

1https://www.raspberrypi.com/
2https://developer.nvidia.com/embedded/jetson-nano-developer-kit,

accessed: 2023-12-10

https://www.raspberrypi.com/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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Model CPU Acceleration RAM Storage Wireless Power Camera Price

RaspberryPi 4B
Cortex-A72
4 × 1.5GHz to
1.8GHz

No 1GB to 8GB Micro-SD
WiFi,
Bluetooth

3A @ 5V
External: Eth-
ernet, CSI, USB

40-84e

RaspberryPi 5B
Cortex-A76
4 × 2.4GHz

No 4GB to 8GB Micro-SD
WiFi,
Bluetooth

5A @ 5V
External: Eth-
ernet, CSI, USB

69-93e

NVidia JET-
SON NANO

Cortex-A57
4 × 1.43GHz

GPU 4GB Micro-SD No
2A to 4A

@ 5V

External: Eth-
ernet, CSI, USB

205e

Google Coral
DevBoard

Cortex-A53
4 × 4GHz

TPU 1GB to 4GB

Micro-SD /
8GB inter-
nal

WiFi,
Bluetooth

3A @ 5V
External: Eth-
ernet, CSI, USB

167-230e

Luxonis OAK-1
AF

Intel MyriadX
700MHz

VPU 0.5GB to 2GB
16MB in-
ternal

No 1.5A @ 5V Internal: 12 MP 191e

Luxonis OAK-
D Pro

Intel Myriad X
700MHz

VPU 0.5GB to 2GB
16MB in-
ternal

No 1.5A @ 5V

Internal:
12 MP, nightvi-
sion

383e

ESP-S3-EYE
ESP32-S3
2 × 40MHz to
240MHz

No up to 32MB 8MB
WiFi,
Bluetooth

USB Internal: 2MP 30e

Arduino Nano
33 BLE Sense

Cortex-M4F
64MHz

No 256 kB 1MB Bluetooth USB
External:
GPIOs

49e

Google Coral
Accelerator

N/A TPU N/A N/A N/A USB N/A 91e

Table 9.2: Comparison of selected hardware platforms for the inference in the field. We split it into three main groups: systems that
run a complete operating system, complete embedded systems (Luxonis), and microcontroller-based ones (ESP32, Arduino). The Coral
Accelerator takes a special role: It extends other systems like the RaspberryPi with an external TPU and speeds up the inference.
The range in the prices for the Coral and RaspberryPis results from versions with different RAM. Models with SD-storage can usually
handle up to 2TB. We use the RaspberryPi 4B (marked grey). (Prices from Dec 2023)
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inference using the standard AI frameworks. The operating system is an adapted
Debian with some extensions for the GPU. Like for the RaspberryPi, Ethernet,
CSI, and GPIOs are available. It does not have Bluetooth or WiFi integrated.

The Google Coral DevBoard3 is the third platform often used for AI deploy-
ments. Similar to the previously mentioned ones, Coral offers several OEM-
options to integrate the functionality into new hardware developments. It has
a TPU accelerating the tasks in machine learning. In contrast to a GPU, the
models must be quantized before they can be executed on such a TPU as it only
operates with 8 bit integers. This adaptation slightly affects the detection per-
formance but significantly increases the energy and computing efficiency. The
Coral offers similar interfaces compared to the RaspberryPi: WiFi, Bluetooth,
Ethernet, GPIOs, and CSI are available on board. The operating system on the
Coral boards is Mendel Linux, a lightweight adaptation of Debian.

The three systems before do not have a camera system integrated. Arbitrary
cameras can be connected, for example, using Ethernet or USB, gaining flexibil-
ity. Other options are integrated systems as, for example, Luxonis4 offers. Their
embedded hardware platform includes an acceleration unit they call Vision Pro-
cessing Unit (VPU) and at least one camera. They offer a variety of different
modules with different camera types. Table 9.2 exemplary lists two. The OAK-1
is a cheaper system with one 12 MP color camera. The more expensive OAK-
D Pro additionally offers depth information and night vision capabilities with
built-in infrared LEDs. They also provide models with PoE rated for outdoor
usage or the individual parts to embed everything to own developments. They
do not give direct access to a GPIO, which requires either additional hardware
for the notification or a customized hardware design to activate the deterrents.
Existing object detection or classification models can be adapted using their
toolchain, i.e., quantized and uploaded to their modules. The inference runs
directly on the module in real-time.

In the last couple of years, microcontrollers have become more and more
powerful and offer today comparable high computing power at a low price with
low energy requirements. As an example, we take the ESP-EYE by espressif5. It
combines a camera with a microcontroller and allows it to run simple tasks like
face detection. Due to the constraints in memory and computing power, only
small models with low-resolution images can be run on such microcontroller-
based systems. The authors in [98] used the MAX78000 microcontroller by
analog devices to run a minimal, ultra-lightweight YOLO model (TinyissimoY-
OLO) for a limited set of classes and RGB input images with 88 × 88 pixels.
Similar holds for the Arduino Nano 33 BLE Sense6. An adapted version of Ten-
sorFlow allows running minimalistic person detection on the device7. A camera
can be connected using the device GPIOs. Those microcontroller-based systems
are primarily programmed with the manufacturer’s toolchain using C or C++
or using the Arduino ecosystem.

The last row of Table 9.2 shows a special case: The Google Coral Accelerator
also comes from the Coal ecosystem. It is a TPU which can be attached to

3https://coral.ai/
4https://www.luxonis.com/
5https://www.espressif.com/en/products/devkits/esp-eye/, accessed: 2023-12-10
6https://docs.arduino.cc/hardware/nano-33-ble-sense, accessed: 2023-12-10
7https://github.com/tensorflow/tflite-micro-arduino-examples,

accessed: 2023-12-10

https://coral.ai/
https://www.luxonis.com/
https://www.espressif.com/en/products/devkits/esp-eye/
https://docs.arduino.cc/hardware/nano-33-ble-sense
https://github.com/tensorflow/tflite-micro-arduino-examples
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other devices via USB. It adds the advantage of TPU acceleration, for example,
to a RaspberryPi.

It should be mentioned that we focus in Table 9.2 on the most widely used
devices. This holds especially for the RaspberryPi: It is the only prominent
device from a complete class of small computers. Similar devices with slightly
different hardware and application backgrounds exist but are not further dis-
cussed.

9.2.3 Summary

We discussed the two main parts of the detection system in the previous sections.
Table 9.1 lists suitable cameras, and the overview in Table 9.2 shows an excerpt
of the available hardware options for the inference. Regarding the camera, we
decided to go for outdoor surveillance cameras as they offer all the required
properties. An additional device is required to run the object detection. The
most promising options are the devices from the RaspberryPi ecosystem. As
shown in Table 6.2 on Page 65, the inference times are still acceptable and
improve with every new version of the RaspberryPi or by adding the Coral
Accelerator. The prices are comparably low, and we can easily add additional
communication capabilities using the GPIOs. It also has a large community
offering support, libraries, and hardware.

The devices with on-board acceleration, i.e., GPU or TPU, like the Coral
or Jetson boards, show better performance but are more expensive and have a
smaller community. Their OEM boards might be an option for a customized
hardware design.

The Luxonis cameras show promising performance and are ready to use.
Unfortunately, there are no GPIOs available that can trigger external events.
Here, we require additional hardware like a RaspberryPi to activate the deter-
rents. Also, here, the OEM parts might be a choice for the later development
of custom hardware.

From an energy and cost point of view, the embedded systems would be
perfect. Unfortunately, the maximum size of the models and camera images
is restricted: Only low-resolution images and models with few classes can be
executed. The example code focuses mostly on simple person detection close to
the camera. With the rapid developments in this area, this will change soon.

Therefore, we focus this work on the RaspberryPi in combination with the
Axis camera to detect animals in the field. The following section will discuss
the possible deterrents.

9.3 Deterrents

After discussing wolves’ detection in the previous section, this section focuses
on the deterrents. Those are activated wirelessly and should reliably and sus-
tainably deter the wolves. Ideally, the animals will keep their distance from the
pasture for a longer time.

Chapter 2 discussed commercially available hardware to deter dogs and
wolves. This section briefly discusses the deterrents currently used in the mAIn-
Zaun project from the technical side. It also relates those to our WolfNet sensor
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Figure 9.3: The deterrents are activated wirelessly by the system from Figure 9.2
and expel the detected wolf. Exemplary, this figure shows light and sound as
two possible deterrents.

network, as it will be discussed in Section 9.5. Our project partners evaluate
the effect of the deterrents on predators and farm animals.

The currently selected deterrents aim at the senses of the predators, espe-
cially the eyes and the hearing. Figure 9.4 shows the currently used devices. All
operate at 12V.

Figure 9.4a is a powerful floodlight developed for heavy-duty construction
vehicles8. It can provide a maximum luminous flux of 8000 lm, operates at 12V
with a maximum power of 70W. As wolves react sensitively to strobe light, we
use WolfNet to power cycle this light with 20Hz. This device is also the most
powerful one from the energy point of view. It sets the limit for the current
offered by the WolfNet devices.

The second option, as shown in Figure 9.4b, is the ready-to-use ultrasonic
generator M175 by Kemo9. It requires 12V to 14V and draws a maximum of
150mA. The siren-like sound can be changed on the device in a range of 8 kHz
to 41 kHz. The deterrent range is given with a maximum of 100m and sound
pressure of maximum 135 dB.

The ultrasound cannon M161, also from Kemo10, is depicted in Figure 9.4c.
Here, we use it as an arrangement of three cannons, each placed in one, grey,
30 cm long tube as recommended by the manufacturer. It it powered with 12V
to 14.4V and draws a maximum of 150mA. It generates ultrasonic pulses with a
fixed frequency of 22 kHz and maximum 120 dB. According to the manufacturer,
this results in an acoustic range of up to 300m. The real range of sound,
especially ultrasound depends on a variety of different parameters, including
humidity, temperature, wind, general environment, surface etc. The required
tables, equations, and considerations are available in various publications [99,
100, 101].

Our project partners from the Professorship of Animal Husbandry, Be-

8https://www.was.eu/de/arbeitsscheinwerfer/w130-8000/1214I/2276,
accessed: 2023-12-10

9https://www.kemo-electronic.de/de/Auto/Module/M175-Tiervertreiber-

Ultraschall-Leistungsstark.php, accessed: 2023-12-10
10https://www.kemo-electronic.de/de/Auto/Module/M161-Ultraschall-Power-

Kanone.php, accessed: 2023-12-10

https://www.was.eu/de/arbeitsscheinwerfer/w130-8000/1214I/2276
https://www.kemo-electronic.de/de/Auto/Module/M175-Tiervertreiber-Ultraschall-Leistungsstark.php
https://www.kemo-electronic.de/de/Auto/Module/M175-Tiervertreiber-Ultraschall-Leistungsstark.php
https://www.kemo-electronic.de/de/Auto/Module/M161-Ultraschall-Power-Kanone.php
https://www.kemo-electronic.de/de/Auto/Module/M161-Ultraschall-Power-Kanone.php
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(a) A powerful light cre-
ating flashes with up to
8000 lm.

(b) The Kemo M175 creates
siren-like ultrasound in dif-
ferent frequencies.

(c) The Kemo M161 creates
directed ultrasound pulses
using a fixed frequency.
The tubes help to direct the
sound.

Figure 9.4: The three deterrents currently used with WolfNet in the mAInZaun
project.

Figure 9.5: After designing the detection and the deterrents, we use LoRa as the
communication technology to activate the deterrents and send status messages.

haviour and Welfare at the Justus-Liebig University in Gießen currently evaluate
the effect of the deterrents on farm animals and possible predators. The objec-
tive is to find, align, and parametrize the deterrents so that the farm animals
are only marginally affected and show a sustainable effect on the predators.

Our task in this thesis regarding the deterrents is to ensure the general
functionality from the technical point of view. The animal tests, especially on
wolves, require preliminary studies and a lot of paperwork. Due to the wolf’s
high protection level in Europe, applying for a license for animal testing is com-
plex and takes a long time. We are optimistic that those required permissions
will be available till the end of the mAInZaun project.
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9.4 Communication in the Field

After we selected the hardware for the detection in Section 9.2 and also discussed
the deterrents in Section 9.3, we introduce the communication between both. In
Chapter 2, wireless communication based on LoRa was selected and evaluated
in Chapter 4. In contrast to other technologies, it allows direct communication
between two nodes without needing an infrastructure, as depicted in Figure 9.5.

Now, LoRa has to be connected to the other parts of the system. Fortu-
nately, many LoRa transceivers, adaptation boards, hardware platforms, and
drivers exist. One can basically select the hardware according to the require-
ments. For the RaspberryPi, we chose the Raspberry Pi LoRa/GPS HAT from
seedstudio11. It has a standard Semtech SX127x LoRa transceiver for 868MHz
and additionally, a Global Navigation Satellite System (GNSS) module. The
latter is not required, but having the clock time available is advantageous. Also,
automatically knowing the exact position of some nodes can be beneficial dur-
ing the system setup phase. This module can be used with standard Python
libraries to send and receive packets.

For the deterrents, we do not require a lot of computing power. Therefore,
we decided to use an ESP32-based microcontroller. Here, we use a Heltec12

board. It uses the same Semtech SX127x LoRa transceiver we selected for the
RaspberryPi. Additionally, it has a small display, which helps to show some
status information like the number of packets received, the battery status, and
the device address while working in the field. Like the RaspberryPi, the Heltec
can be programmed in Python, allowing us to reuse our code on both devices.

The transceivers are from the same family as the ones used in the Evaluation
in Section 4.2. Therefore, we are confident that our setup will lead to similar
results regarding the communication range in the final deployment.

The following section will describe our software implementation, combining
the individual components from the previous sections into a complete ecosystem.

9.5 WolfNet : A LoRa-based Sensor Network

Bringing the hardware to life requires suitable software. We created WolfNet
as one implementation that connects the individual parts from the previous
sections to a simple WSAN to activate the deterrents. We publish it as an open-
source project and optimize it for LoRa. The source is available on GitHub13.
For the design, we defined the following requirements:

• Reliable:
The system should be able to operate even if some nodes fail. It should
not rely on a single point of failure.

• Secure:
The data transmission should be encrypted.

11https://www.seeedstudio.com/Raspberry-Pi-LoRa-GPS-HAT-support-868M-

frequency.html, accessed: 2023-10-12
12https://heltec.org/project/wifi-lora-32/, accessed: 2023-12-10
13https://github.com/ComNets-Bremen/WolfNet/

https://www.seeedstudio.com/Raspberry-Pi-LoRa-GPS-HAT-support-868M-frequency.html
https://www.seeedstudio.com/Raspberry-Pi-LoRa-GPS-HAT-support-868M-frequency.html
https://heltec.org/project/wifi-lora-32/
https://github.com/ComNets-Bremen/WolfNet/
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• LoRa Optimized:
The system should be optimized to LoRa and meet the duty-cycle con-
straints for the 868MHz frequency band.

• Adressing:
The default LoRa packets do not have an addressing scheme. We require
broadcast and node addresses to allow selective activation of the deter-
rents.

• Status Update:
It should be possible to collect the system’s status, for example, by using
a maintenance device.

• Standard Hardware:
Everything should run using commodity hardware.

• Actuator Driver:
We need an option to connect different, sometimes high-power, deterrent
actuators.

We base WolfNet on LoRa and implement a packet format fitting into nor-
mal LoRa frames. As the range of LoRa – especially in the free field – is
usually at least several hundred meters (c.f. Chapter 4), we do not require rout-
ing or packet forwarding technologies. Therefore, we implement only a simple
addressing scheme supporting direct node addressing (called unicast) and also
broadcast, i.e., sending a message to all nodes of the network in the communica-
tion range. For that, we use 32 bit pseudo-random addresses. We also support
acknowledgments to confirm the successful reception, if required. The packets
are validated using a CRC and encrypted using a simple Advanced Encryption
Standard (AES). AES operates with a fixed block size, leading to the resulting
packet size being a multiple of 16B. Smaller packets have to be padded, i.e.,
extended to match this size. As a result, all currently used packets (besides the
acknowledgments) have a fixed size of 48B.

For the transmission, we use LoRa with the default parameters according
to our experience from other projects: a spreading factor of 7, a code rate of
4

5
, and a bandwidth of 125 kHz at a frequency of 868MHz. Together with the

packet size of 48B, this corresponds to the first line of Table 4.1 on page 46.
We mainly use two packet types: The normal packets are sent in case of the

detection event of a predator and activate the deterrents. If this packet is sent
as a broadcast, all deterrents of the network in radio range are activated. As an
alternative, this activation message can also be sent as a unicast message if only
a specific deterrent should be activated. The required message type depends on
the application, deterrents, and configuration and can vary.

The second message type is the beacon message, transmitted in the config-
urable interval of 120 s. This message type fulfills three duties: Firstly, it helps
to detect the nodes in the communication range and can also help to detect
failures. Secondly, it is used to estimate the distances and the reliability of
the network by the received signal strength. Thirdly, it transmits the battery
level as voltage and percentage, helping monitor the devices and prevent low
batteries.

We implemented WolfNet on two hardware systems. First is a RaspberryPi
with a LoRa shield. This one is used to send deterrent activation messages in
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Figure 9.6: The first version of our WolfNet actuator in a weather-protected box.
The 10A fuse in a black protection, and the power switch can be seen on the
left. On the right side, the circuit according to the schematic from Appendix D,
including the Heltec, is visible. The box is powered using a 12V battery.

case of a positive detection. The second is used on the deterrents and based on
Heltec microcontrollers.

A third hardware option exists for debugging and evaluation reasons. It is
also based on the Heltec and used to manually activate the deterrents using a
button or motion sensor.

The deterrents used in this project require 12V and draw a current of up to
7A. This requires a powerful battery, in our case, a 12V car battery. The ESP32
on the Heltec is not able to handle such voltages and currents. Therefore, we
created a small circuit to supply the microcontroller and operate the deterrents.
The schematic and the used components are listed in Appendix D. Everything is
packed in a weather-protected box and shown in Figure 9.6. The box is powered
using the 12V battery and can activate deterrents with 12V and up to 10A.

The next section will discuss the overall evaluation of the complete system.

9.6 Performance Evaluation of WolfNet

We validated the overall performance of WolfNet as follows: To ensure that the
circuit operates as expected, we ran it with the maximum load, i.e., the spot,
and measured the voltage drop, current, and temperature of the most important
parts. We tested it with flashing and continuously switched on light. In case of
design problems, the output voltage should significantly differ from the input
voltage. If parts are not correctly dimensioned or wrong assumptions are made,
those parts usually become hot. We confirmed with our thermal camera that
the critical parts operate within the specified temperature ranges. We found no
such issues on the circuit.

We have a built-in battery monitoring system to estimate the remaining life-
time. We evaluated the voltage and the state of charge of the battery measured
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by the system and found no significant differences compared to the externally
measured values.

Regarding the software and possible bugs, we ran the devices in our lab for
24 days, regularly triggered the detections, and monitored the debug output.
Till the end of this test, the deterrents were activated reliably without any
errors or system reboots. We regularly received the broadcasts with the status
information and the unicast messages to start and also stop the deterrents.

Due to our experience with LoRa and the discussion and results in Chapter 4,
we are confident that wireless communication is not a real challenge in the
expected applications. We can also easily adapt some of the LoRa parameters
to adapt in case of minor communication issues. We are more interested in the
overall system’s performance: How everything is placed, how non-experts work
with the hardware, what has to be considered regarding the power supply and
possible false alarms, etc. Testing all those cases separately requires a lot of
effort, time, and resources.

On the other hand, experiments with the complete system are scheduled
at the end of the mAInZaun project. Here, everything will be tested from all
relevant perspectives, i.e., technically and from the animal behavioral point of
view. Especially for the latter, the application to run experiments with animals,
especially wolves, is complex and very time-consuming. Therefore, we had to
reschedule planned field trials in the past.

It makes sense to combine those experiments together and evaluate the over-
all system. We are confident that those final experiments in the mAInZaun
project can be performed till the end of the project. We will evaluate and
publish those results later.



Chapter 10

Summary, Conclusions, and

Outlook

This thesis presented several novelties in the area of object detection for outdoor
images. In this chapter, we summarize our work, provide conclusions, and
discuss the areas for future work.

10.1 Summary

Taking care of wildlife and striving for a sustainable life between wild animals
and humans becomes more and more important. This coexistence is not always
easy, as can be seen in the case of predators or Carnivora. This thesis takes the
wolf in Germany as an example. The number of killed farm animals increases
continuously, and therefore, the number of humans demanding to limit the num-
ber of wolves also rises. The mAInZaun project, in which context this thesis has
been written, offers an alternative solution. The objective is to use the recent
developments in the area of artificial intelligence, combined with automatically
activated, non-lethal deterrents, to keep the wolf away from farm animals.

For that, a camera continuously monitors the farmland environment and
analyzes the pictures using an object detection model. If this model detects a
predator like the wolf, deterrents are activated and expel the attacker. Ideally,
this will protect the farm animals from attacks.

Such a system should run automatically with only minor maintenance. Also,
environmental challenges like vegetation and weather have to be considered.

In the context of the overall tasks, we provide several contributions. The
first contribution is the image dataset. Most existing datasets focus on
high-quality images. For the application in this project, realistic images are
required. We have discussed the challenges in outdoor images and what can
happen unexpectedly. In the end, we collected more than 100.000 images of
different animals, primarily wolves. In contrast to the existing dataset, we
explicitly include bad images that are often sorted out. Our dataset further
consists of a time series that allows further applications.

Working with those images in the area of computer vision requires labels:
What shows this image? Creating those labels is a tedious task. Here, our sec-
ond contribution provides a webservice for crowd-based image labeling
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called Wolf-or-Not . In contrast to existing services and applications, we reduce
the user interface to a bare minimum and open it to the general public. With
a kind of gamification, even non-experts can easily help label or evaluate many
images quickly.

In our third contribution, we focus on the automatic creation of train-
ing datasets. We combine our Wolf-or-Not web service with state-of-the-art
object detection and several pre- and postprocessing steps. The resulting Shad-
owWolf can run automatically and continuously create training datasets with-
out human interaction. It performs well for hidden objects, especially distant
wolves, as in our case. We use those training datasets to train arbitrary, scal-
able object detection algorithms. ShadowWolf is modular and extensible and
can also be used for other tasks like evaluating camera trap images. This tool
is beneficial for everyone working with this kind of picture.

Object detection and classification are essential parts of this thesis. Our
fourth contribution is the evaluation of current models in this area. We
have compared the existing frameworks and models and selected one, namely
YOLO, that we have evaluated in more detail, especially regarding the model
runtime on different hardware. The outcome is interesting for everybody de-
ploying such models on various hardware and offers guidance for the model
selection.

The objective of the project is to deploy everything in the field. This de-
ployment is our fifth contribution. We have evaluated the suitable cameras
and computing devices for outdoor deployments. We have further discussed the
available deterrents and suitable communication technologies for such an appli-
cation. Finally, we offer a new wireless sensor network implementation, called
WolfNet , tailored for wireless wolf detection and deterrents.

The following section will conclude this work.

10.2 Conclusions

Working with our real-world, low-quality camera trap images differs from most
other tasks in the field of object detection and image processing. For this work,
we have a strong focus on wolves and have collected more than 100,000 images
of them in various environmental conditions. Our system shows good perfor-
mance and is beneficial for many applications and users. In contrast to pure
machine-learning technologies, we show significantly higher performance, espe-
cially for hard-to-see animals. We designed it to be flexible and adaptable to
other animals, models, and applications.

This flexibility regarding other animals has to be evaluated ideally by adding
dogs. Unfortunately, dogs’ visual appearances vary widely: Bernese Mountain
Dogs, Bulldogs, German Shepherds, Staffordshire Bull Terriers, etc., look com-
pletely different. Furthermore, uncountable mixed-breed dogs exist. The objec-
tive is that our system can also detect those dogs and deter them if no human
accompanies them. Collecting a suitable dataset with our camera in the outside
environment is quite challenging and takes a lot of time. We are confident that
we will benefit from our iterative approach in this task and adapt continuously
to new classes.

Regarding deploying those models, we evaluated several architectures and
focussed on YOLO for our work. Here, we tested the performance of the different
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models on various machines. Depending on the available resources, one can
select a suitable model. The nano YOLO model with just 6.6MB needs on
a RaspberryPi just 388ms to analyze one full-HD image. Those findings are
essential for later optimizing and deploying the detection system.

We also discussed the overall system deployment. Here, we focus on how
to activate deterrents automatically and wirelessly. With WolfNet , we offer
an implementation of a new LoRa-based outdoor sensor network for remote
environments. We evaluated the main functionality in our lab and with com-
munication range tests. In the next step, together with our project partners,
we will evaluate the complete system, including the deterrents and their effect
on the wolves. Due to our experience with wireless sensor networks, we do not
expect significant technical challenges in this part.

This work handled several aspects in the area of wildlife detection and de-
terrence. Due to the complexity and variety of the tasks and challenges, we plan
to continue this work. The following section gives an outlook on future work.

10.3 Outlook

The project and the variety of tasks are quite extensive. We have several ideas
and visions for extending this work further.

During the work, we collected a lot of images of wolves in their habitat.
Others might be interested in those datasets with the rising interest in the wolf.
Therefore, we plan to publish our datasets soon.

This work has a strong focus on the wolf. We would like to evaluate every-
thing also on the closest relative, the dog. Especially stray dogs can also lead
to panic and might also kill sheep. We did not collect sufficient and realistic
dog images to compare the sensitivity of our models between dogs and wolves
in a natural environment. The same holds also for other predators like jackals
or lynxes. Also, outside the context of predators, we plan to use our system
as a general wildlife monitoring support system for all kinds of animals. It can
easily be adapted for (assisted) animal detection for arbitrary wildlife images.

Another idea currently being handled as a student project is evaluating time
series and object tracking for ShadowWolf . Here, we test if ShadowWolf can
benefit from the movement of an object through the image over time to increase
(or decrease) the trust in a particular detection. The idea is to analyze a series of
images and track the position of an individual over it. We assume this approach
can increase the detection in images where the wolf is only partly visible and
covered, for example, by the vegetation.

Finally, we plan to deploy the complete system, including the sensor network,
deterrents, and camera system, at the end of the project. Here, aspects like
reliability, communication, usability by non-experts, etc, will be evaluated and
published as separate works.
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Appendix A

Camera System

This appendix gives the details of the camera system we used to collect our
data. We give the part list as well as some insights into the assembly.

We accept no liability or responsibility for the system, the structure, or the
parts used. This documentation and the parts list are intended solely as a source
of ideas and inspiration.
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A.1 List of Materials

Component Type Descripion
Outer box Thalassa

NSYTBS292412T
Outer casing and weather protec-
tion

Cable connec-
tion box

misc. For the high voltage connections

Power Cable misc. For outdoor usage
Ethernet cable 30 cm For the connection from the Rasp-

berryPi to the PoE injector
Ethernet cable 30 cm From the PoE injector to the eth-

ernet through
Ethernet cable 20m From the box to the camera
Ethernet inline
coupler

Conec IK10024 Connection for the ethernet cable

PoE injector AXIS T8120 Power supply for the camera
5V power sup-
ply

LOGILINK PA0122 60W, with external cable. For
RaspberryPi and WiFi stick.

RaspberryPi
(RPi)

RaspberryPi 4, 4GB Processing and storage of data

Case for RPi misc. Additional protection for the
RaspberryPi

SD-Card for
RPi

16GB Operating system and storage

Power cable for
RPi

USB-C cable Connection between 5V power
supply and RaspberryPi

Cable Gland M12 For the power cable. Including nut
Nylon breath-
able valve

M12 Reduce the risk of condensation
inside the case. Including nut

Spring clamps Wago 221 For high voltage connections
Camera Axis M2025-LE Weather-protected camera
SSD 1TB USB SSD Data storage
WiFi stick HUAWEI E8372-W LTE internet connectivity
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A.2 Assembly of Components

This section gives some impressions on the assembly of the box.

Figure A.1: A short video of the assembly is available on YouTube:
https://youtu.be/fM83phMp5wA

Figure A.2: Overview of the main parts of the camera system according to the
Table in Section A.1. Also, some required tools are shown. Not shown: camera,
WiFi stick, and ethernet cable for the camera

https://youtu.be/fM83phMp5wA
https://youtu.be/fM83phMp5wA
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Figure A.3: A picture showing the camera system during the field test.

Figure A.4: During the tests, the camera was mostly connected to the fence
built around the wolves.



Appendix B

Our Datasets

Chapter 5 described the collection of our images and our main datasets. This
appendix lists the datasets and also gives some example images. All photos
were taken with an Axis M2025-LE in Full HD resolution (1920× 1080 pixels).

B.1 Alternativer Bärenpark Worbis

In this park, we collected our first dataset. The wolves there were hybrid Amer-
ican Timber Wolves. This breed does not live in the wild in Germany. Thus,
we used this dataset only for the first evaluation and collected further images
of European Grey Wolves living in Germany.

Location Alternativer Bärenpark Worbis,
Duderstädter Allee 49,
37339 Leinefelde-Worbis

Animals Two American Timber Wolves (black and
white), several Brown Bears, some Squirrels

Data collection 2021-09-13 - 2021-09-14
Number of images 9536

Size 15.5GB
Night images 203

Day images 9333
Camera positions 1
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Figure B.1: The distribution of the images collected in Worbis over the hour of
the day.

Figure B.2: Two wolves and one bear were captured in Worbis in the daytime.
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Figure B.3: During the night, another camera with infrared light pointed at our
camera, resulting in unusable images.
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B.2 Wildpark Lüneburger Heide

In this park, we collected our second dataset and the first one containing only
European Grey Wolves.

Location Wildpark Lüneburger Heide,
Wildpark 1,
21271 Nindorf-Hanstedt

Animals Two European Grey Wolves
Data collection 2022-03-28 - 2022-03-30

Number of images 27538
Size 47.5GB

Night images 991
Day images 26547

Camera positions 2
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Figure B.4: The distribution of the images collected in Wildpark over the hour
of the day.
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Figure B.5: Wildpark, camera position 1 during the day with two wolves.

Figure B.6: Wildpark, camera position 1 during the dusk with both wolves.
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Figure B.7: Wilpark, camera position 1 during the night with raindrops on the
lens and one wolf.

Figure B.8: Wildpark, camera position 2 during the day with one clearly visible
and one hidden wolf.
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Figure B.9: Wildpark, camera position 2 during the night with one wolf ap-
proaching the camera with some raindrops on the lens.
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B.3 Wingster Waldzoo

At the Wingster Waldzoo, we collected most of our images over several weeks.

Location Wingster Waldzoo,
Am Olymp 1,
21789 Wingst

Animals Five European Grey Wolves
Data collection 2023-01-11 - 2023-02-02

Number of images 63212
Size 91.5GB

Night images 10121
Day images 53091

Camera positions 1
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Figure B.10: The distribution of the images collected in Wingst over the hour
of the day.
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Figure B.11: A picture from Wingst during the day showing one wolf.

Figure B.12: A picture from Wingst during the night showing three wolves.
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Figure B.13: A picture from Wingst during the night showing three wolves in
contre jour.

Figure B.14: A picture from Wingst during the day with a wet lens.
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Figure B.15: A picture from Wingst during the night while it rains.

Figure B.16: A picture from Wingst during the night with an insect in front of
the lens.
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Appendix C

ShadowWolf Configurations

This Appendix lists the ShadowWolf configurations used in this work.

C.1 Complete ShadowWolf Configuration

Listing C.1 shows the config.json with all currently available options of Shad-
owWolf enabled.

1 {
2 "main_config ": {
3 "image_dir" : "/home/jd/src/comnets -github/mAInZaun/ShadowWolf/

ground_truth/reference",
4 "image_filetype ": "jpg"
5 },
6 "modules ": [
7 {
8 "name": "Analysis.BasicAnalysis.BasicAnalysisClass"
9 },

10 {
11 "name": "Batching.TimeBatching.TimeBatchingClass",
12 "exif_time_source ": "DateTime",
13 "max_timediff_s ": 5
14 },
15 {
16 "name": "Preprocessing.NullProcessing.NullPreprocessingClass"
17 },
18 {
19 "name": "Segmentation.MOG2Segmentation.MOG2Class",
20 "segments_dir ": "segments",
21 "extra_dir ": "extra_images",
22 "segmentation_min_area ": 0.0001 ,
23 "segmentation_grey_limit ": 10,
24 "segmentation_extend_boxes ": 90,
25 "segmentation_detector_history ": 0,
26 "segmentation_detector_varThreshold ": 60,
27 "segmentation_detector_detectShadows ": false ,
28 "segmentation_detector_min_wh ": 50,
29 "average_image_percentage ": 20,
30 "average_image_min_images ": 5,
31 "inputs ": [
32 {
33 "dataclass ": "Storage.DataStorage.BatchingDataStorage",
34 "getter ": "get_batches"
35 }
36 ]
37 },
38 {
39 "name": "Detection.YoloDetection.YoloDetectionClass",
40 "detect_model ": "best.pt",
41 "detect_repository ": "ultralytics/yolov5",
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42 "detect_force_reload ": false ,
43 "detect_batchsize ": 4,
44 "inputs ": [
45 {
46 "dataclass ": "Storage.DataStorage.SegmentDataStorage",
47 "getter ": "get_segments"
48 },{
49 "dataclass ": "Storage.DataStorage.BasicAnalysisDataStorage",
50 "getter ": "get_all_images"
51 }
52 ]
53 },
54 {
55 "name": "Deduplication.Imagededup.ImagededupClass",
56 "inputs ": [
57 {
58 "dataclass ": "Storage.DataStorage.SegmentDataStorage",
59 "getter ": "get_segments"
60 },
61 {
62 "dataclass ": "Storage.DetectionStorage.DetectionStorage",
63 "getter ": "get_cut_images"
64 }
65 ]
66 },
67 {
68 "name": "Evaluation.SimpleLabelEvaluation.SimpleLabelEvaluationClass",
69 "inputs ": [
70 {
71 "dataclass ": "Storage.DetectionStorage.DetectionStorage",
72 "getter ": "get_cut_images"
73 },
74 {
75 "dataclass ": "Storage.DataStorage.SegmentDataStorage",
76 "getter ": "get_segments"
77 }
78 ],
79 "duplicates ": {
80 "dataclass ": "Storage.DuplicateStorage.DuplicateImageStorage",
81 "getter ": "get_main_similar"
82 }
83 },
84 {
85 "name": "Backmapping.SimpleBackmapping.BackmappingClass",
86 "inputs ": [
87 {
88 "dataclass ": "Storage.SimpleLabelStorage.SimpleLabelStorage",
89 "getter ": "get_images"
90 }
91 ],
92 "duplicates ": {
93 "dataclass ": "Storage.DuplicateStorage.DuplicateImageStorage",
94 "getter ": "get_similar"
95 }
96 },{
97 "name ":" Decision.WeightedDecision.WeightedDecisionClass",
98 "iou_threshold ": 0.2,
99 "weights" : {" Segment ": 0.6, "Detection ": 0.4},

100 "ignore_classes_higher" : 200,
101 "box_combine_method" : "bbox_smaller_box"
102 },{
103 "name": "Generators.YoloExportGenerator.YoloExportClass",
104 "detection_threshold ": 0.5
105 },{
106 "name": "Generators.ReviewExportGenerator.ReviewExportClass"
107 }
108 ]
109 }

Listing C.1: Complete ShadowWolf configuration with all options enabled.
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C.2 ShadowWolf with YOLO

Listing C.2 shows the config.json running only the YOLO-part of Shadow-
Wolf . No segmentation or evaluation using Wolf-or-Not is performed.

1 {
2 "main_config ": {
3 "image_dir" : "/home/jd/src/comnets -github/mAInZaun/ShadowWolf/

ground_truth/reference",
4 "image_filetype ": "jpg"
5 },
6 "modules ": [
7 {
8 "name": "Analysis.BasicAnalysis.BasicAnalysisClass"
9 },

10 {
11 "name": "Detection.YoloDetection.YoloDetectionClass",
12 "detect_model ": "best.pt",
13 "detect_repository ": "ultralytics/yolov5",
14 "detect_force_reload ": false ,
15 "detect_batchsize ": 4,
16 "inputs ": [
17 {
18 "dataclass ": "Storage.DataStorage.BasicAnalysisDataStorage",
19 "getter ": "get_all_images"
20 }
21 ]
22 },
23 {
24 "name": "Backmapping.SimpleBackmapping.BackmappingClass",
25 "inputs ": [
26 {
27 "dataclass ": "Storage.DetectionStorage.DetectionStorage",
28 "getter ": "get_images"
29 }
30 ]
31 },{
32 "name ":" Decision.WeightedDecision.WeightedDecisionClass",
33 "iou_threshold ": 0.2,
34 "weights" : {" Segment ": 0.6, "Detection ": 0.4},
35 "ignore_classes_higher" : 200,
36 "box_combine_method" : "bbox_smaller_box"
37 },{
38 "name": "Generators.YoloExportGenerator.YoloExportClass",
39 "detection_threshold ": 0.5
40 },{
41 "name": "Generators.ReviewExportGenerator.ReviewExportClass"
42 }
43 ]
44 }

Listing C.2: ShadowWolf configuration with only the YOLO detection enabled.
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C.3 ShadowWolf with YOLO and Segmentation

Listing C.3 shows the config.json with the YOLO-part and the segmentation
of ShadowWolf enabled. No evaluation using Wolf-or-Not is performed.

1 {
2 "main_config ": {
3 "image_dir" : "/home/jd/src/comnets -github/mAInZaun/ShadowWolf/

ground_truth/reference",
4 "image_filetype ": "jpg"
5 },
6 "modules ": [
7 {
8 "name": "Analysis.BasicAnalysis.BasicAnalysisClass"
9 },

10 {
11 "name": "Batching.TimeBatching.TimeBatchingClass",
12 "exif_time_source ": "DateTime",
13 "max_timediff_s ": 5
14 },
15 {
16 "name": "Preprocessing.NullProcessing.NullPreprocessingClass"
17 },
18 {
19 "name": "Segmentation.MOG2Segmentation.MOG2Class",
20 "segments_dir ": "segments",
21 "extra_dir ": "extra_images",
22 "segmentation_min_area ": 0.0001 ,
23 "segmentation_grey_limit ": 10,
24 "segmentation_extend_boxes ": 90,
25 "segmentation_detector_history ": 0,
26 "segmentation_detector_varThreshold ": 60,
27 "segmentation_detector_detectShadows ": false ,
28 "segmentation_detector_min_wh ": 50,
29 "average_image_percentage ": 20,
30 "average_image_min_images ": 5,
31 "inputs ": [
32 {
33 "dataclass ": "Storage.DataStorage.BatchingDataStorage",
34 "getter ": "get_batches"
35 }
36 ]
37 },
38 {
39 "name": "Detection.YoloDetection.YoloDetectionClass",
40 "detect_model ": "best.pt",
41 "detect_repository ": "ultralytics/yolov5",
42 "detect_force_reload ": false ,
43 "detect_batchsize ": 4,
44 "inputs ": [
45 {
46 "dataclass ": "Storage.DataStorage.SegmentDataStorage",
47 "getter ": "get_segments"
48 },
49 {
50 "dataclass ": "Storage.DataStorage.BasicAnalysisDataStorage",
51 "getter ": "get_all_images"
52 }
53 ]
54 },
55 {
56 "name": "Backmapping.SimpleBackmapping.BackmappingClass",
57 "inputs ": [
58 {
59 "dataclass ": "Storage.DetectionStorage.DetectionStorage",
60 "getter ": "get_images"
61 }
62 ]
63 },{
64 "name ":" Decision.WeightedDecision.WeightedDecisionClass",
65 "iou_threshold ": 0.2,
66 "weights" : {" Segment ": 0.6, "Detection ": 0.4},
67 "ignore_classes_higher" : 200,
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68 "box_combine_method" : "bbox_smaller_box"
69 },{
70 "name": "Generators.YoloExportGenerator.YoloExportClass",
71 "detection_threshold ": 0.5
72 },{
73 "name": "Generators.ReviewExportGenerator.ReviewExportClass"
74 }
75 ]
76 }

Listing C.3: ShadowWolf configuration with the YOLO detection and the
segmentation enabled.
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Appendix D

Hardware for WolfNet

The deterrents require a higher voltage and draw a higher current as it can be
delivered by a standard microcontroller. For that, we designed a circuit with
three main tasks: 1) activate deterrents requiring 12V and higher currents, 2)
use a 12V (car) battery and supply the microcontroller with the required 5V,
and 3), measure the voltage and thus the remaining capacity of the battery.
The assembled box is depicted in Figure 9.6 on page 109.

This appendix lists the main technical details of the design. We also give
the list of the used components and their function as well as the schematic. The
most recent version is available in the WolfNet GitHub repository:
https://github.com/ComNets-Bremen/WolfNet/

D.1 Technical Parameters

Input voltage Typ. 12V (11V to 14.4V)
Input current Max. 11A

Actuator output voltage Equals input voltage, typ. 12V
Actuator output current Max. 10A
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D.2 Bill of Materials

Ref Value Comment
D1 LED Status LED
J1 Input 12V Power supply
J2 Output, 12V, 12A Connection for actuators

JP1 Power microcontroller 5V power for microcontroller
JP2 Manual control Disable actuator permanently
Q1 BC547C Preamp for actuator MOSFET Q2
Q2 BUZ11 MOSFET power for actuator
R1 10 kΩ Power control
R2 4.7 kΩ Power control
R3 10Ω Power control
R4 15 kΩ Voltage divider for battery status
R5 2.7 kΩ Voltage divider for battery status
R6 120Ω Series resistance for LED
U1 Heltec WiFi LoRa 32 Microcontroller and LoRa
U2 TSR 1-2450 DC-DC converter,

6.5V to 36V in, 5V out

D.3 Schematics of the Actuator Box

The following page shows the schematic of the actuator box.





142 APPENDIX D. HARDWARE FOR WOLFNET



Bibliography

[1] N. Schoof, A. Reif, R. Luick, E. Jedicke, G. Kämmer, and J. Metzner, “Der
Wolf in Deutschland – Herausforderungen für weidebasierte Tierhaltungen
und den praktischen Naturschutz,” Naturschutz und Landschaftsplanung:
Zeitschrift für angewandte Ökologie, 2021.

[2] Council of European Union, “Council regulation (EU) no 92/43/eec,”
1992,
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
31992L0043.

[3] Council of Europe, “European treaty series - no. 104: Convention on the
conservation of european wildlife and natural habitats,” 1979,
https://rm.coe.int/1680078aff.

[4] Council of European Union, “Council regulation (EU) no 58/1998: con-
cerning the protection of animals kept for farming purposes,” 1998,
http://data.europa.eu/eli/dir/1998/58/2019-12-14, Retrieved: 2023-05-
09.

[5] Bundesministerium der Justiz und für Verbraucherschutz, “Verordnung
zum Schutz landwirtschaftlicher Nutztiere und anderer zur Erzeugung
tierischer Produkte gehaltener Tiere bei ihrer Haltung (Tierschutz-
Nutztierhaltungsverordnung - TierSchNutztV),
§ 3 Allgemeine Anforderungen an Haltungseinrichtungen,” available on-
line: https://www.gesetze-im-internet.de/tierschnutztv/__3.html, Re-
trieved: 2023-05-09.

[6] Landwirtschaftskammer Nordrhein-Westfalen, “Checkliste Cross Com-
pliance 2022 für landwirtschaftliche Unternehmen in Nordrhein-
Westfalen,” 2022, accessed: 2023-05-05. [Online]. Avail-
able: https://www.landwirtschaftskammer.de/landwirtschaft/beratung/
pdf/cross-compliance-checkliste-nrw.pdf

[7] P. Mäder, D. Boho, M. Rzanny, M. Seeland, H. C. Wittich, A. Deggel-
mann, and J. Wäldchen, “The flora incognita app–interactive plant species
identification,” Methods in Ecology and Evolution, vol. 12, no. 7, pp. 1335–
1342, 2021.

[8] H. L. Larsen, C. Pertoldi, N. Madsen, E. Randi, A. V. Stronen, H. Root-
Gutteridge, and S. Pagh, “Bioacoustic detection of wolves: identifying
subspecies and individuals by howls,” Animals, vol. 12, no. 5, p. 631,
2022.

143

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31992L0043
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31992L0043
https://rm.coe.int/1680078aff
http://data.europa.eu/eli/dir/1998/58/2019-12-14
https://www.gesetze-im-internet.de/tierschnutztv/__3.html
https://www.landwirtschaftskammer.de/landwirtschaft/beratung/pdf/cross-compliance-checkliste-nrw.pdf
https://www.landwirtschaftskammer.de/landwirtschaft/beratung/pdf/cross-compliance-checkliste-nrw.pdf


144 BIBLIOGRAPHY

[9] D. E. Swann, C. C. Hass, D. C. Dalton, and S. A. Wolf, “Infrared-triggered
cameras for detecting wildlife: an evaluation and review,” Wildlife Society
Bulletin, vol. 32, no. 2, pp. 357–365, 2004.

[10] A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, “Where’s the
bear? automating wildlife image processing using iot and edge cloud
systems,” in Proceedings of the Second International Conference on
Internet-of-Things Design and Implementation, ser. IoTDI ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p. 247–258.
[Online]. Available: https://doi.org/10.1145/3054977.3054986

[11] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the Inception Architecture for Computer Vision,” 2015. [Online].
Available: https://doi.org/10.48550/arXiv.1512.00567

[12] M. S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swanson, M. S. Palmer,
C. Packer, and J. Clune, “Automatically identifying, counting, and de-
scribing wild animals in camera-trap images with deep learning,” Proceed-
ings of the National Academy of Sciences, vol. 115, no. 25, pp. E5716–
E5725, 2018.

[13] A. Swanson, M. Kosmala, C. Lintott, R. Simpson, A. Smith, and
C. Packer, “Data from: Snapshot serengeti, high-frequency annotated
camera trap images of 40 mammalian species in an african savanna,”
2015. [Online]. Available: https://doi.org/10.5061/dryad.5pt92

[14] M. S. Norouzzadeh, D. Morris, S. Beery, N. Joshi, N. Jojic, and J. Clune,
“A deep active learning system for species identification and counting in
camera trap images,” Methods in ecology and evolution, vol. 12, no. 1, pp.
150–161, 2021.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” 2015. [Online]. Available: https://doi.org/10.48550/arXiv.
1512.03385

[16] A. Singh, M. Pietrasik, G. Natha, N. Ghouaiel, K. Brizel, and N. Ray,
“Animal detection in man-made environments,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, 2020,
pp. 1438–1449.

[17] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal
Loss for Dense Object Detection,” 2018. [Online]. Available: https:
//doi.org/10.48550/arXiv.1708.02002

[18] B. Kellenberger, D. Marcos, S. Lobry, and D. Tuia, “Half a percent of
labels is enough: Efficient animal detection in uav imagery using deep
cnns and active learning,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 57, no. 12, pp. 9524–9533, 2019.

[19] M. A. Tabak, M. S. Norouzzadeh, D. W. Wolfson, S. J. Sweeney, K. C.
VerCauteren, N. P. Snow, J. M. Halseth, P. A. Di Salvo, J. S. Lewis,
M. D. White et al., “Machine learning to classify animal species in camera
trap images: Applications in ecology,” Methods in Ecology and Evolution,
vol. 10, no. 4, pp. 585–590, 2019.

https://doi.org/10.1145/3054977.3054986
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.5061/dryad.5pt92
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1708.02002
https://doi.org/10.48550/arXiv.1708.02002


BIBLIOGRAPHY 145

[20] A. M. Roy, J. Bhaduri, T. Kumar, and K. Raj, “Wildect-yolo: An efficient
and robust computer vision-based accurate object localization model for
automated endangered wildlife detection,” Ecological Informatics, vol. 75,
p. 101919, 2023.

[21] S. Beery, D. Morris, and S. Yang, “Efficient pipeline for camera trap image
review,” arXiv preprint arXiv:1907.06772, 2019.

[22] M. Ivašić-Kos, M. Krišto, and M. Pobar, “Human detection in thermal
imaging using yolo,” in Proceedings of the 2019 5th International Confer-
ence on Computer and Technology Applications, 2019, pp. 20–24.

[23] R. Ippalapally, S. H. Mudumba, M. Adkay, and N. V. HR, “Object detec-
tion using thermal imaging,” in 2020 IEEE 17th India Council Interna-
tional Conference (INDICON). IEEE, 2020, pp. 1–6.

[24] J. Cilulko, P. Janiszewski, M. Bogdaszewski, and E. Szczygielska, “Infrared
thermal imaging in studies of wild animals,” European Journal of Wildlife
Research, vol. 59, pp. 17–23, 2013.

[25] M. Meyer and G. Kuschk, “Automotive radar dataset for deep learning
based 3d object detection,” in 2019 16th European Radar Conference (Eu-
RAD), 2019, pp. 129–132.

[26] R. Pérez, F. Schubert, R. Rasshofer, and E. Biebl, “Single-frame vulnera-
ble road users classification with a 77 ghz fmcw radar sensor and a con-
volutional neural network,” in 2018 19th International Radar Symposium
(IRS), 2018, pp. 1–10.

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Im-
ageNet Large Scale Visual Recognition Challenge,” International Journal
of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[28] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick,
J. Hays, P. Perona, D. Ramanan, P. Doll’a r, and C. L. Zitnick,
“Microsoft COCO: common objects in context,” 2014. [Online]. Available:
http://arxiv.org/abs/1405.0312

[29] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund, J. Tenen-
baum, and B. Katz, “Objectnet: A large-scale bias-controlled dataset for
pushing the limits of object recognition models,” Advances in neural in-
formation processing systems, vol. 32, 2019.

[30] A. Su, H. Lee, X. Tan, C. J. Suarez, N. Andor, Q. Nguyen, and H. P. Ji,
“A deep learning model for molecular label transfer that enables cancer
cell identification from histopathology images,” NPJ precision oncology,
vol. 6, no. 1, p. 14, 2022.

[31] M. Geiß, R. Wagner, M. Baresch, J. Steiner, and M. Zwick, “Automatic
bounding box annotation with small training datasets for industrial man-
ufacturing,” Micromachines, vol. 14, no. 2, p. 442, 2023.

http://arxiv.org/abs/1405.0312


146 BIBLIOGRAPHY

[32] M. Längkvist, M. Alirezaie, A. Kiselev, and A. Loutfi, “Interactive learning
with convolutional neural networks for image labeling,” in International
Joint Conference on Artificial Intelligence (IJCAI), New York, USA, 9-
15th July, 2016, 2016.

[33] M. Xu, Z. Zhang, H. Hu, J. Wang, L. Wang, F. Wei, X. Bai, and Z. Liu,
“End-to-end semi-supervised object detection with soft teacher,” Proceed-
ings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2021.

[34] Y. Zhang, Y. Wang, H. Zhang, B. Zhu, S. Chen, and D. Zhang, “Onela-
beler: A flexible system for building data labeling tools,” in Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems,
2022, pp. 1–22.

[35] J. C. Chang, S. Amershi, and E. Kamar, “Revolt: Collaborative crowd-
sourcing for labeling machine learning datasets,” in Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems, 2017,
pp. 2334–2346.

[36] T. Götz and V. M. Janik, “Repeated elicitation of the acoustic startle reflex
leads to sensitisation in subsequent avoidance behaviour and induces fear
conditioning,” BMC neuroscience, vol. 12, no. 1, pp. 1–13, 2011.

[37] Z. A. Schakner and D. T. Blumstein, “Behavioral biology of marine mam-
mal deterrents: a review and prospectus,” Biological Conservation, vol.
167, pp. 380–389, 2013.

[38] J. Blackshaw, G. Cook, P. Harding, C. Day, W. Bates, J. Rose, and
D. Bramham, “Aversive responses of dogs to ultrasonic, sonic and flashing
light units,” Applied Animal Behaviour Science, vol. 25, no. 1-2, pp. 1–8,
1990.

[39] S. W. Breck, R. Williamson, C. Niemeyer, and J. A. Shivik, “Non-lethal
radio activated guard for deterring wolf depredation in idaho: summary
and call for research,” in Proceedings of the Vertebrate Pest Conference,
vol. 20, no. 20, 2002.

[40] P. A. Darrow and J. A. Shivik, “Bold, shy, and persistent: Variable
coyote response to light and sound stimuli,” Applied Animal Behaviour
Science, vol. 116, no. 1, pp. 82–87, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168159108001901

[41] J. A. Shivik, A. Treves, and P. Callahan, “Nonlethal techniques for manag-
ing predation: primary and secondary repellents,” Conservation Biology,
vol. 17, no. 6, pp. 1531–1537, 2003.

[42] S. A. Stone, S. W. Breck, J. Timberlake, P. M. Haswell, F. Najera, B. S.
Bean, and D. J. Thornhill, “Adaptive use of nonlethal strategies for mini-
mizing wolf–sheep conflict in idaho,” Journal of Mammalogy, vol. 98, no. 1,
pp. 33–44, 2017.

https://www.sciencedirect.com/science/article/pii/S0168159108001901


BIBLIOGRAPHY 147

[43] A. Förster, J. Dede, A. Könsgen, K. Kuladinithi, V. Kuppusamy,
A. Timm-Giel, A. Udugama, and A. Willig, “A beginner’s guide to
infrastructure-less networking concepts,” IET Networks, 2023. [Online].
Available: https://doi.org/10.1049/ntw2.12094

[44] A. Forster, Introduction to wireless sensor networks. John Wiley & Sons,
2016.

[45] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportunities,
and challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1247–1256,
2003.

[46] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of
IPv6 packets over IEEE 802.15. 4 networks,” 2007. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4944

[47] M. Becker, Services in wireless sensor networks: modelling and optimisa-
tion for the efficient discovery of services. Springer Science & Business
Media, 2014.

[48] IEEE Computer Society, “Ieee standard for low-rate wireless networks,”
IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709,
2016.

[49] P. Rawat, M. Haddad, and E. Altman, “Towards efficient disaster manage-
ment: 5g and device to device communication,” in 2015 2nd International
Conference on Information and Communication Technologies for Disaster
Management (ICT-DM), 2015, pp. 79–87.

[50] A. F. M. S. Shah, “Architecture of emergency communication systems in
disasters through uavs in 5g and beyond,” Drones, vol. 7, no. 1, 2023.
[Online]. Available: https://www.mdpi.com/2504-446X/7/1/25

[51] S. Ahmed, M. Rashid, F. Alam, and B. Fakhruddin, “A disaster response
framework based on iot and d2d communication under 5g network tech-
nology,” in 2019 29th International Telecommunication Networks and Ap-
plications Conference (ITNAC), 2019, pp. 1–6.

[52] A. M. Cardenas, M. K. Nakamura Pinto, E. Pietrosemoli, M. Zennaro,
M. Rainone, and P. Manzoni, “A low-cost and low-power messaging system
based on the lora wireless technology,” Mobile networks and applications,
vol. 25, pp. 961–968, 2020.

[53] E. F. Rivera Guzmán, E. D. Mañay Chochos, M. D.
Chiliquinga Malliquinga, P. F. Baldeón Egas, and R. M. Toasa Guachi,
“Lora network-based system for monitoring the agricultural sector in
andean areas: Case study ecuador,” Sensors, vol. 22, no. 18, 2022.
[Online]. Available: https://www.mdpi.com/1424-8220/22/18/6743

[54] V. Križanović, K. Grgić, J. Spišić, and D. Žagar, “An advanced
energy-efficient environmental monitoring in precision agriculture using
lora-based wireless sensor networks,” Sensors, vol. 23, no. 14, 2023.
[Online]. Available: https://www.mdpi.com/1424-8220/23/14/6332

https://doi.org/10.1049/ntw2.12094
https://www.rfc-editor.org/rfc/rfc4944
https://www.mdpi.com/2504-446X/7/1/25
https://www.mdpi.com/1424-8220/22/18/6743
https://www.mdpi.com/1424-8220/23/14/6332


148 BIBLIOGRAPHY

[55] M. Ragnoli, A. Leoni, G. Barile, G. Ferri, and V. Stornelli, “Lora-based
wireless sensors network for rockfall and landslide monitoring: A case
study in pantelleria island with portable lorawan access,” Journal of
Low Power Electronics and Applications, vol. 12, no. 3, 2022. [Online].
Available: https://www.mdpi.com/2079-9268/12/3/47

[56] M. Ragnoli, G. Barile, A. Leoni, G. Ferri, A. Pelliccione, V. Stornelli,
and D. Del Tosto, “Lora-based wireless sensor network system for aquatic
elements and flood early warning monitoring,” in Sensors and Microsys-
tems, G. Di Francia and C. Di Natale, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 124–128.

[57] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp.
115–133, 1943.

[58] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018,
pp. 4510–4520.

[59] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for
mobilenetv3,” 2019.

[60] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2015. [Online]. Available: https:
//doi.org/10.48550/arXiv.1409.1556

[61] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” 2016. [Online].
Available: https://doi.org/10.48550/arXiv.1506.01497

[62] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[63] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-
Y. Fu, and A. C. Berg, SSD: Single Shot MultiBox Detector.
Springer International Publishing, 2016, p. 21–37. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-46448-0_2

[64] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
Atrous Convolution for Semantic Image Segmentation,” 2017. [Online].
Available: https://doi.org/10.48550/arXiv.1706.05587

[65] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks
for Semantic Segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440. [Online].
Available: https://doi.org/10.48550/arXiv.1411.4038

[66] R. Rojas, Neural Networks – A systematic introduction. Springer, 1996.
[Online]. Available: https://doi.org/10.1007/978-3-642-61068-4

https://www.mdpi.com/2079-9268/12/3/47
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1506.01497
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.48550/arXiv.1411.4038
https://doi.org/10.1007/978-3-642-61068-4


BIBLIOGRAPHY 149

[67] G. Paaß and D. Hecker, Künstliche Intelligenz: was steckt hinter der Tech-
nologie der Zukunft? Springer, 2020.

[68] T. Rashid, Make your own neural network. CreateSpace Independent
Publishing Platform North Charleston, SC, USA, 2016, vol. 29.

[69] ——, Neuronale Netze selbst programmieren: ein verständlicher Einstieg
mit Python. O’Reilly, 2017.

[70] R. Li, Y. Wang, F. Liang, H. Qin, J. Yan, and R. Fan, “Fully quantized
network for object detection,” in 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019, pp. 2805–2814.

[71] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[72] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” 2017.

[73] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[74] T. Das, R.-J. Bruintjes, A. Lengyel, J. van Gemert, and S. Beery, “Do-
main adaptation for rare classes augmented with synthetic samples,” arXiv
preprint arXiv:2110.12216, 2021.

[75] Y. Wang, K. Kitani, and X. Weng, “Joint object detection and multi-
object tracking with graph neural networks,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 13 708–13 715.

[76] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[77] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. J. Kennedy, “Training
deep neural networks on imbalanced data sets,” in 2016 International
Joint Conference on Neural Networks (IJCNN), 2016, pp. 4368–4374.

[78] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


150 BIBLIOGRAPHY

[79] F. Chollet et al., “Keras,” https://keras.io, 2015.

[80] H. Jin, F. Chollet, Q. Song, and X. Hu, “Autokeras: An automl library for
deep learning,” Journal of Machine Learning Research, vol. 24, no. 6, pp.
1–6, 2023. [Online]. Available: http://jmlr.org/papers/v24/20-1355.html

[81] CVAT.ai Corporation, “Computer Vision Annotation Tool (CVAT),” Sep.
2022. [Online]. Available: https://github.com/opencv/cvat

[82] Tzutalin, “Labelimg,” Free Software: MIT License, 2015. [Online].
Available: https://github.com/tzutalin/labelImg

[83] A. Zourmand, A. L. Kun Hing, C. Wai Hung, and M. AbdulRehman, “In-
ternet of things (iot) using lora technology,” in 2019 IEEE International
Conference on Automatic Control and Intelligent Systems (I2CACIS),
2019, pp. 324–330.

[84] LoRa Alliance, “A technical overview of LoRa and LoRaWAN,” White Pa-
per, November 2015. [Online]. Available: https://www.tuv.com/content-
media-files/master-content/services/products/1555-tuv-rheinland-lora-
alliance-certification/tuv-rheinland-lora-alliance-certification-overview-
lora-and-lorawan-en.pdf

[85] Semtech Corporation, “LoRa and LoRaWAN: A technical
overview,” White Paper, December 2019. [Online]. Avail-
able: https://lora-developers.semtech.com/uploads/documents/files/
LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf

[86] E. ETSI, “Etsi en 300 220-2 v3. 2.1-short range devices (srd) operating in
the frequency range 25 mhz to 1 000 mhz; part 2: Harmonised standard
for access to radio spectrum for non specific radio equipment.”

[87] B. S. Chaudhari and M. Zennaro, LPWAN Technologies for IoT and M2M
Applications. Academic Press, 2020.

[88] T. Karunathilake and A. Förster, “Using lora communication for
urban vanets: Feasibility and challenges,” 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2311.18070

[89] D. Vasconcelos, M. S. Yin, F. Wetjen, A. Herbst, T. Ziemer, A. Förster,
T. Barkowsky, N. Nunes, and P. Haddawy, “Counting mosquitoes in the
wild: An internet of things approach,” in Proceedings of the Conference
on Information Technology for Social Good, ser. GoodIT ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p. 43–48.
[Online]. Available: https://doi.org/10.1145/3462203.3475914

[90] J. Dede, D. Wewetzer, and A. Förster, “AI in the Wild: Challenges
of Remote Deployments,” in INFORMATIK 2023 - Designing Futures:
Zukünfte gestalten. Bonn: Gesellschaft für Informatik e.V., 2023, pp.
1583–1589. [Online]. Available: https://doi.org/10.18420/inf2023_161

[91] J. Dede and A. Förster, “ShadowWolf – Automatic Labelling, Evaluation
and Model Training Optimised for Camera Trap Wildlife Images,” Under
Review, 2024.

https://keras.io
http://jmlr.org/papers/v24/20-1355.html
https://github.com/opencv/cvat
https://github.com/tzutalin/labelImg
https://www.tuv.com/content-media-files/master-content/services/products/1555-tuv-rheinland-lora-alliance-certification/tuv-rheinland-lora-alliance-certification-overview-lora-and-lorawan-en.pdf
https://www.tuv.com/content-media-files/master-content/services/products/1555-tuv-rheinland-lora-alliance-certification/tuv-rheinland-lora-alliance-certification-overview-lora-and-lorawan-en.pdf
https://www.tuv.com/content-media-files/master-content/services/products/1555-tuv-rheinland-lora-alliance-certification/tuv-rheinland-lora-alliance-certification-overview-lora-and-lorawan-en.pdf
https://www.tuv.com/content-media-files/master-content/services/products/1555-tuv-rheinland-lora-alliance-certification/tuv-rheinland-lora-alliance-certification-overview-lora-and-lorawan-en.pdf
https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf
https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf
https://doi.org/10.48550/arXiv.2311.18070
https://doi.org/10.1145/3462203.3475914
https://doi.org/10.18420/inf2023_161


BIBLIOGRAPHY 151

[92] International Organization for Standardization, “Iso 20653:2013-02: Road
vehicles – degrees of protection (ip code) – protection of electrical equip-
ment against foreign objects, water and access,” 02 2013.

[93] European Committee for Electrotechnical Standardization, “Degrees of
protection provided by enclosures (ip code),” 10 2013.

[94] J. Dede and A. Förster, “Animals in the Wild: Using Crowdsourcing to
Enhance the Labelling of Camera Trap Images,” in 2023 19th International
Conference on Distributed Computing in Smart Systems and the Internet
of Things (DCOSS-IoT), 2023, pp. 748–754.

[95] Z. Zivkovic and F. Van Der Heijden, “Efficient adaptive density estimation
per image pixel for the task of background subtraction,” Pattern recogni-
tion letters, vol. 27, no. 7, pp. 773–780, 2006.

[96] Z. Zivkovic, “Improved adaptive gaussian mixture model for background
subtraction,” in Proceedings of the 17th International Conference on Pat-
tern Recognition, 2004. ICPR 2004., vol. 2. IEEE, 2004, pp. 28–31.

[97] T. Jain, C. Lennan, Z. John, and D. Tran, “Imagededup,” https://github.
com/idealo/imagededup, 2019.

[98] J. Moosmann, M. Giordano, C. Vogt, and M. Magno, “Tinyissimoyolo:
A quantized, low-memory footprint, tinyml object detection network for
low power microcontrollers,” in 2023 IEEE 5th International Conference
on Artificial Intelligence Circuits and Systems (AICAS). IEEE, Jun.
2023. [Online]. Available: http://dx.doi.org/10.1109/AICAS57966.2023.
10168657

[99] E. J. Rickley, G. G. Fleming, and C. J. Roof, “Simplified procedure for
computing the absorption of sound by the atmosphere,” Noise control
engineering journal, vol. 55, no. 6, pp. 482–494, 2007.

[100] Organización Internacional de Normalización, ISO 9613-1: 1993, Acous-
tics: Attenuation of sound during propagation outdoors. Part 1: Calcula-
tion of the absorption of sound by the atmosphere. International Orga-
nization for Standardization, 1993.

[101] ——, ISO 9613-2: 1996, Acoustics: Attenuation of sound during propa-
gation outdoors. Part 2: General method of calculation. International
Organization for Standardization, 1993.

https://github.com/idealo/imagededup
https://github.com/idealo/imagededup
http://dx.doi.org/10.1109/AICAS57966.2023.10168657
http://dx.doi.org/10.1109/AICAS57966.2023.10168657

	Acknowledgments
	Abstract
	Kurzfassung
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Carnivora in Germany
	1.2 The mAInZaun Project
	1.3 Contributions of the Thesis
	1.4 Outline of the Thesis

	2 Problem Statement and State of the Art
	2.1 Problem Statement
	2.2 State of the Art: Animal Detection
	2.3 State of the Art: Image Datasets
	2.4 State of the Art: Image Labeling
	2.5 State of the Art: Wolf Deterrents
	2.6 State of the Art: Wireless Technologies
	2.7 Summary and System Design

	3 Machine Vision
	3.1 Tasks in the Area of Computer Vision
	3.2 Terms and Concepts
	3.2.1 Neuron
	3.2.2 Rectified Linear Unit (ReLU)
	3.2.3 Logit
	3.2.4 Tensor
	3.2.5 Input Size
	3.2.6 Pooling
	3.2.7 Feature Map
	3.2.8 Quantization
	3.2.9 Supervised and Unsupervised Learning
	3.2.10 Active Learning
	3.2.11 Hyperparameters in Machine Learning
	3.2.12 Backpropagation
	3.2.13 Deep Neural Network (DNN)
	3.2.14 Convolutional Neural Network (CNN)
	3.2.15 Transformer
	3.2.16 Region-Based Convolutional Neural Network
	3.2.17 Support Vector Machine (SVM)
	3.2.18 Feature Pyramid Network (FPN)
	3.2.19 Data Augmentation
	3.2.20 Transfer Learning
	3.2.21 Domain Adaptation
	3.2.22 Object Tracking
	3.2.23 Artificial Image Creation

	3.3 Computer Vision Frameworks
	3.3.1 TensorFlow
	3.3.2 PyTorch
	3.3.3 Keras
	3.3.4 MegaDetector
	3.3.5 YOLO
	3.3.6 Summary

	3.4 Computer Vision Tools
	3.5 Common Metrics in Machine Vision
	3.5.1 Intersection over Union
	3.5.2 Possible Detection Outcomes
	3.5.3 Precision and Recall
	3.5.4 F1-score
	3.5.5 Other Metrics


	4 LoRa Technology
	4.1 Overview of the LoRa Technology
	4.2 Evaluation of LoRa
	4.3 Summary

	5 Data Collection in the Wild
	5.1 Our Camera Setup
	5.2 Challenges in Outdoor Image Collection
	5.2.1 Casing and Protection
	5.2.2 Costs of the System
	5.2.3 The Power Supply
	5.2.4 Transport: Weight and Size
	5.2.5 Notifications and Communication
	5.2.6 Environmental Challenges
	5.2.7 Lenses and Optical Challenges
	5.2.8 Camera Position

	5.3 Our Datasets
	5.3.1 The Annotated Reference Dataset
	5.3.2 Base Dataset
	5.3.3 Test Dataset
	5.3.4 Automatically Labelled Datasets

	5.4 Summary

	6 Evaluation of YOLO
	6.1 Evaluation Setup
	6.2 Perfomance Evaluation of YOLO
	6.3 Summary of the Evaluation of YOLO

	7 Wolf-or-Not: Online Labeling
	7.1 Idea of Wolf-or-Not
	7.2 Methodology and System Architecture
	7.2.1 Wolf-or-Not Architecture
	7.2.2 Our Web App

	7.3 Evaluation
	7.3.1 Use Case
	7.3.2 Results
	7.3.3 Discussion

	7.4 Summary

	8 ShadowWolf
	8.1 Motivation for ShadowWolf
	8.2 Methodology and System Architecture
	8.2.1 Analysis
	8.2.2 Batching
	8.2.3 Preprocessing
	8.2.4 Segmentation
	8.2.5 Detection
	8.2.6 Duplicate Handling
	8.2.7 Evaluation
	8.2.8 Backmapping
	8.2.9 Decisions
	8.2.10 Training Data Generator
	8.2.11 Additional Functionality
	8.2.12 Implementation Details

	8.3 Performance Evaluation
	8.3.1 Use Case
	8.3.2 General Results
	8.3.3 Effect of the Daytime
	8.3.4 Required Computing Capabilities
	8.3.5 Discussion
	8.3.6 Further Ideas and Challenges

	8.4 Summary

	9 Deployment
	9.1 Architecture
	9.2 Animal Detection Hardware
	9.2.1 The Camera
	9.2.2 The Processing Unit
	9.2.3 Summary

	9.3 Deterrents
	9.4 Communication in the Field
	9.5 WolfNet: A LoRa-based Sensor Network
	9.6 Performance Evaluation of WolfNet

	10 Summary, Conclusions, and Outlook
	10.1 Summary
	10.2 Conclusions
	10.3 Outlook

	Appendix
	A Camera System
	A.1 List of Materials
	A.2 Assembly of Components

	B Our Datasets
	B.1 Alternativer Bärenpark Worbis
	B.2 Wildpark Lüneburger Heide
	B.3 Wingster Waldzoo

	C ShadowWolf Configurations
	C.1 Complete ShadowWolf Configuration
	C.2 ShadowWolf with YOLO
	C.3 ShadowWolf with YOLO and Segmentation

	D Hardware for WolfNet
	D.1 Technical Parameters
	D.2 Bill of Materials
	D.3 Schematics of the Actuator Box




